Publications by authors named "Kara Bocan"

Acetone is a metabolic byproduct found in the exhaled breath and can be measured to monitor the metabolic degree of ketosis. In this state, the body uses free fatty acids as its main source of fuel because there is limited access to glucose. Monitoring ketosis is important for type I diabetes patients to prevent ketoacidosis, a potentially fatal condition, and individuals adjusting to a low-carbohydrate diet.

View Article and Find Full Text PDF

Development of fast methods to conduct in silico experiments using computational models of cellular signaling is a promising approach toward advances in personalized medicine. However, software-based cellular network simulation has runtimes plagued by wasted CPU cycles and unnecessary processes. Hardware emulation affords substantial speedup, but prior attempts at hardware implementation of biological simulators have been limited in scope and have suffered from inaccuracies due to poor random number generation.

View Article and Find Full Text PDF

Semiconductor-enriched single-walled carbon nanotubes (s-SWCNTs) have potential for application as a chemiresistor for the detection of breath compounds, including tetrahydrocannabinol (THC), the main psychoactive compound found in the marijuana plant. Herein we show that chemiresistor devices fabricated from s-SWCNT ink using dielectrophoresis can be incorporated into a hand-held breathalyzer with sensitivity toward THC generated from a bubbler containing analytical standard in ethanol and a heated sample evaporator that releases compounds from steel wool. The steel wool was used to capture THC from exhaled marijuana smoke.

View Article and Find Full Text PDF

The number of published results in biology and medicine is growing at an exceeding rate, and thus, extracting relevant information for building useful models is becoming very laborious. Furthermore, with the newly published information, previously built models need to be extended and updated, and with the voluminous literature, it is necessary to automate the model extension process. In this work, we introduce a methodology for extending logical models of cell signaling networks using a Genetic Algorithm (GA).

View Article and Find Full Text PDF

The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna.

View Article and Find Full Text PDF

Wireless energy transfer is a broad research area that has recently become applicable to implantable medical devices. Wireless powering of and communication with implanted devices is possible through wireless transcutaneous energy transfer. However, designing wireless transcutaneous systems is complicated due to the variability of the environment.

View Article and Find Full Text PDF

The ability to accurately measure real-time pH fluctuations in-vivo could be highly advantageous. Early detection and potential prevention of bacteria colonization of surgical implants can be accomplished by monitoring associated acidosis. However, conventional glass membrane or ion-selective field-effect transistor (ISFET) pH sensing technologies both require a reference electrode which may suffer from leakage of electrolytes and potential contamination.

View Article and Find Full Text PDF

Translational research has recently been rediscovered as one of the basic tenants of engineering. Although many people have numerous ideas of how to accomplish this successfully, the fundamental method is to provide an innovative and creative environment. The University of Pittsburgh has been accomplishing this goal though a variety of methodologies.

View Article and Find Full Text PDF