This is the first report to demonstrate quantitative monitoring of infant brain development with frequency-domain near-infrared spectroscopy (FD-NIRS). Regionally specific increases in blood volume and oxygen consumption were measured in healthy infants during their first year. The results agree with prior PET and SPECT reports; but, unlike these methods, FD-NIRS is portable and uses nonionizing radiation.
View Article and Find Full Text PDFHypoxic-ischemic brain injury in the perinatal period is a major cause of morbidity and mortality. Presently, there are no proven effective therapies with which to safeguard the human neonatal brain against this type of injury. Minocycline, a semisynthetic tetracycline, has been shown to be neuroprotective in certain adult ischemic injury/stroke and neurodegenerative disease models.
View Article and Find Full Text PDFIn the premature infant, hypoxic-ischemic damage to the cerebral white matter [periventricular leukomalacia (PVL)] is a common and leading cause of brain injury that often results in chronic neurologic disability from cerebral palsy. The cellular basis for the propensity of white matter injury to occur in the developing brain and the greater resistance of the adult white matter to similar injury remains unknown. By using a neonatal rat model of hypoxic-ischemic injury, we found that the mechanism of perinatal white matter injury involved maturation-dependent vulnerability in the oligodendroctye (OL) lineage.
View Article and Find Full Text PDF