Publications by authors named "Kapustka L"

What do environmental contaminants and climate change have in common with the virus SARS-CoV-2 and the disease COVID-19? We argue that one common element is the wealth of basic and applied scientific research that provides the knowledge and tools essential in developing effective programs for addressing threats to humans and social-ecological systems. Research on various chemicals, including dichlorodiphenyltrichloroethane and per- and polyfluoroalkyl substances, resulted in regulatory action to protect environmental and human health. Moreover, decades of research on coronaviruses, mRNA, and recently SARS-CoV-2 enabled the rapid development of vaccines to fight the COVID-19 pandemic.

View Article and Find Full Text PDF

Problem formulation (PF) is a critical initial step in planning risk assessments for chemical exposures to wildlife, used either explicitly or implicitly in various jurisdictions to include registration of new pesticides, evaluation of new and existing chemicals released to the environment, and characterization of impact when chemical releases have occurred. Despite improvements in our understanding of the environment, ecology, and biological sciences, few risk assessments have used this information to enhance their value and predictive capabilities. In addition to advances in organism-level mechanisms and methods, there have been substantive developments that focus on population- and systems-level processes.

View Article and Find Full Text PDF

The objective of this paper is to present the results of discussions at a workshop held as part of the International Congress of Radiation Research (Environmental Health stream) in Manchester UK, 2019. The main objective of the workshop was to provide a platform for radioecologists to engage with radiobiologists to address major questions around developing an Ecosystem approach in radioecology and radiation protection of the environment. The aim was to establish a critical framework to guide research that would permit integration of a pan-ecosystem approach into radiation protection guidelines and regulation for the environment.

View Article and Find Full Text PDF

This commentary explores the challenges in radiation safety that derives from the inherent complexity of social-ecological systems. The framework needed to address the challenges acknowledges the characteristics of wicked problems in this era of postnormal science. My objective for this piece is to summarize relevant characteristics of social-ecological systems that underscore the importance, even the necessity, of adopting a holistic approach to radiation safety.

View Article and Find Full Text PDF

In the Fall of 2016 a workshop was held which brought together over 50 scientists from the ecological and radiological fields to discuss feasibility and challenges of reintegrating ecosystem science into radioecology. There is a growing desire to incorporate attributes of ecosystem science into radiological risk assessment and radioecological research more generally, fueled by recent advances in quantification of emergent ecosystem attributes and the desire to accurately reflect impacts of radiological stressors upon ecosystem function. This paper is a synthesis of the discussions and consensus of the workshop participant's responses to three primary questions, which were: 1) How can ecosystem science support radiological risk assessment? 2) What ecosystem level endpoints potentially could be used for radiological risk assessment? and 3) What inference strategies and associated methods would be most appropriate to assess the effects of radionuclides on ecosystem structure and function? The consensus of the participants was that ecosystem science can and should support radiological risk assessment through the incorporation of quantitative metrics that reflect ecosystem functions which are sensitive to radiological contaminants.

View Article and Find Full Text PDF

Exposure to radiation is a potential hazard to humans and the environment. The Fukushima accident reminded the world of the importance of a reliable risk management system that incorporates the dose received from radiation exposures. The dose to humans from exposure to radiation can be quantified using a well-defined system; its environmental equivalent, however, is still in a developmental state.

View Article and Find Full Text PDF

During the past decades, many specialised networks have formed to meet specific radioecological objectives, whether regional or sectorial (purpose-oriented). Regional networks deal with an array of radioecological issues related to their territories. Examples include the South Pacific network of radioecologists, and the European network of excellence in radioecology.

View Article and Find Full Text PDF

Ecological production functions (EPFs) link ecosystems, stressors, and management actions to ecosystem services (ES) production. Although EPFs are acknowledged as being essential to improve environmental management, their use in ecological risk assessment has received relatively little attention. Ecological production functions may be defined as usable expressions (i.

View Article and Find Full Text PDF

Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant concentrations-where observing outcomes is difficult-versus higher ENM doses, where responses are observable. What exposure conditions are typically used in assessing ENM hazards to populations? What conditions are used to test ecosystem-scale hazards? What is known regarding actual ENMs in the environment, via measurements or modeling simulations? How should exposure conditions, ENM transformation, dose, and body burden be used in interpreting biological and computational findings for assessing risks? These questions were addressed in the context of this critical review.

View Article and Find Full Text PDF

This paper reports the output of a consensus symposium organized by the International Union of Radioecology in November 2015. The symposium gathered an academically diverse group of 30 scientists to consider the still debated ecological impact of radiation on populations and ecosystems. Stimulated by the Chernobyl and Fukushima disasters' accidental contamination of the environment, there is increasing interest in developing environmental radiation protection frameworks.

View Article and Find Full Text PDF

Ecological risk assessment as currently practiced has hindered consideration of ecosystem services endpoints and restoration goals in the environmental management process. Practitioners have created barriers between procedures to clean up contaminated areas and efforts to restore ecosystem functions. In this article, we examine linkages between contaminant risk assessment approaches and restoration efforts with the aim of identifying ways to improve environmental outcomes.

View Article and Find Full Text PDF

Radiation protection goals for ecological resources are focussed on ecological structures and functions at population-, community-, and ecosystem-levels. The current approach to radiation safety for non-human biota relies on organism-level endpoints, and as such is not aligned with the stated overarching protection goals of international agencies. Exposure to stressors can trigger non-linear changes in ecosystem structure and function that cannot be predicted from effects on individual organisms.

View Article and Find Full Text PDF

A combination platform-debate session was held at the Society of Environmental Toxicology and Chemistry (SETAC) North America annual meeting in Boston (November 2011). The session was organized by members of the Advisory Group on Sustainability, newly formed and approved as a global entity by the SETAC World Council just prior to the meeting. The platform portion of the session provided a historical backdrop for the debate that was designed to explore SETAC's role in the sustainability dialogue.

View Article and Find Full Text PDF

This brief commentary summarizes the views of a working group assembled by the International Union of Radioecology to advance the approaches used to evaluate effects of radioactive materials in the environment. The key message in both the research needs and the recommendations for management of radioactive materials centers around the need to adopt an ecocentric approach that recognizes the interconnectedness of biota, including humans, and ecological processes.

View Article and Find Full Text PDF

The recent accident at the Fukushima I nuclear power plant in Japan (also known as Fukushima Daiichi) captured the world's attention and re-invigorated concerns about the safety of nuclear power technology. The Editors of Integrated Environmental Assessment and Management invited experts in the field to describe the primary issues associated with the control and release of radioactive materials to the environment, particularly those that are of importance to the health of the human populations and the ecological systems that populate our planet. This collection of invited short commentaries aims to inform on the safety of nuclear power plants damaged by natural disasters and provide a primer on the potential environmental impacts.

View Article and Find Full Text PDF

Ecological risk assessments typically are organized using the processes of planning (a discussion among managers, stakeholders, and analysts to clarify ecosystem management goals and assessment scope) and problem formulation (evaluation of existing information to generate hypotheses about adverse ecological effects, select assessment endpoints, and develop an analysis plan). These processes require modification to be applicable for integrated assessments that evaluate ecosystem management alternatives in terms of their ecological, economic, and social consequences.We present 8 questions that define the steps of a new process we term integrated problem formulation (IPF), and we illustrate the use of IPF through a retrospective case study comparing 2 recent phases of development of the Fire Program Analysis (FPA) system, a planning and budgeting system for the management of wildland fire throughout publicly managed lands in the United States.

View Article and Find Full Text PDF