IEEE Trans Biomed Eng
May 2024
In the current study we propose a magneto-optical system for registration and analysis of magnetic nano- and microparticles magnetic relaxation. The core of our system is the novel compact magnetometer based on an yttrium-iron garnet film and working at room temperature. The sensor demonstrates sensitivity of 35 pT/√{Hz} at 79 Hz and recovery time less than 100 µs, which allows to register quite fast magnetic relaxations of a low amplitude.
View Article and Find Full Text PDFIn the current article, we present a new kind of magnetometer for quantitative detection of magnetic objects (magnetic nano- and submicron particles) in biological fluids and tissues. The sensor is based on yttrium-iron garnet film with optical signal registration system. Inheriting the working principle of a fluxgate magnetometers, the sensor works at a room-temperature, its wide dynamic range allows the measurements in an unshielded environment.
View Article and Find Full Text PDFHere we experimentally demonstrate the topological Faraday effect-the polarization rotation caused by the orbital angular momentum of light. It is found that the Faraday effect of the optical vortex beam passing through a transparent magnetic dielectric film differs from the Faraday effect for a plane wave. The additional contribution to the Faraday rotation depends linearly on the topological charge and radial number of the beam.
View Article and Find Full Text PDFMagnons have demonstrated enormous potential for the next generation of information technology and quantum computing. In particular, the coherent state of magnons resulting from their Bose-Einstein condensation (mBEC) is of great interest. Typically, mBEC is formed in the magnon excitation region.
View Article and Find Full Text PDFAlcohol intoxication has a dangerous effect on human health and is often associated with a risk of catastrophic injuries and alcohol-related crimes. A demand to address this problem adheres to the design of new sensor systems for the real-time monitoring of exhaled breath. We introduce a new sensor system based on a porous hydrophilic layer of submicron silica particles (SiO SMPs) placed on a one-dimensional photonic crystal made of TaO/SiO dielectric layers whose operation relies on detecting changes in the position of surface wave resonance during capillary condensation in pores.
View Article and Find Full Text PDFThe explosive development of quantum magnonics is associated with the possibility of its use as macroscopic quantum systems. In particular, they can find an application for quantum computing processors and other devices. The recently discovered phenomenon of magnon Bose-Einstein condensation and coherent precession of magnetization can be used for these purposes.
View Article and Find Full Text PDFMolecular magnetism and specifically magnetic molecules have recently gained plenty of attention as key elements for quantum technologies, information processing, and spintronics. Transition to the nanoscale and implementation of ordered structures with defined parameters is crucial for advanced applications. Single-walled carbon nanotubes (SWCNTs) provide natural one-dimensional confinement that can be implemented for encapsulation, nanosynthesis, and polymerization of molecules into nanoribbons.
View Article and Find Full Text PDFFerrimagnetic rare-earth substituted metal alloys GdFeCo were shown to exhibit the phenomenon of all-optical magnetization switching via femtosecond laser pulses. All-optical magnetization switching has been comprehensively investigated in out-of-plane magnetized GdFeCo films; however, the films with the in-plane magnetic anisotropy have not yet been studied in detail. We report experimental observations of the magnetization switching of in-plane magnetized GdFeCo films by means of the femtosecond laser pulses in the presence of a small magnetic field of about 40 µT.
View Article and Find Full Text PDFWe propose an all-dielectric magneto-photonic crystal with a hybrid magneto-optical response that allows for the simultaneous measurements of the surface and bulk refractive index of the analyzed substance. The approach is based on two different spectral features of the magneto-optical response corresponding to the resonances in p- and s-polarizations of the incident light. Angular spectra of p-polarized light have a step-like behavior near the total internal reflection angle which position is sensitive to the bulk refractive index.
View Article and Find Full Text PDFWe propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation via the spin Seebeck and inverse spin Hall effects. It has been experimentally demonstrated that optical surface modes localized at the PC surface covered by ferromagnetic layer and materials with giant spin-orbit coupling (SOC) notably increase the efficiency of the optically-induced spin current generation, and provides its tunability by modifying the light wavelength or angle of incidence. Up to 100% of the incident light power can be transferred to heat within the SOC layer and, therefore, to the spin current.
View Article and Find Full Text PDFChemical polarity governs various mechanical, chemical, and thermodynamic properties of dielectrics. Polar liquids have been amply studied, yet the basic mechanisms underpinning their dielectric properties remain not fully understood, as standard models following Debye's phenomenological approach do not account for quantum effects and cannot aptly reproduce the full dc-up-to-THz spectral range. Here, using the illustrative case of monohydric alcohols, we show that deep tunneling and the consequent intermolecular separation of excess protons and "proton-holes" in the polar liquids govern their static and dynamic dielectric properties on the same footing.
View Article and Find Full Text PDFWater at the solid-liquid interface exhibits an anomalous ionic conductivity and dielectric constant compared to bulk water. Both phenomena still lack a detailed understanding. Here, we report radio-frequency measurements and analyses of the electrodynamic properties of interfacial water confined in nanoporous matrices formed by diamond grains of various sizes, ranging from 5 nm to 0.
View Article and Find Full Text PDFHere, we demonstrate the impact of ferromagnetic layer coating on controlling the magneto-optical response. We found that the transverse magneto-optical Kerr effect (TMOKE) signal and TMOKE hysteresis loops of NiFe thin layers coated with a Cr layer show a strong dependence on the thickness of the Cr layer and the incidence angle of the light. The transmission and reflection spectra were measured over a range of incidence angles and with different wavelengths so as to determine the layers' optical parameters and to explain the TMOKE behavior.
View Article and Find Full Text PDFAll-optical magnetization reversal with femtosecond laser pulses facilitates the fastest and least dissipative magnetic recording, but writing magnetic bits with spatial resolution better than the wavelength of light has so far been seen as a major challenge. Here, we demonstrate that a single femtosecond laser pulse of wavelength 800 nm can be used to toggle the magnetization exclusively within one of two 10-nm thick magnetic nanolayers, separated by just 80 nm, without affecting the other one. The choice of the addressed layer is enabled by the excitation of a plasmon-polariton at a targeted interface of the nanostructure, and realized merely by rotating the polarization-axis of the linearly-polarized ultrashort optical pulse by 90°.
View Article and Find Full Text PDFCurrently, sensors invade into our everyday life to bring higher life standards, excellent medical diagnostic and efficient security. Plasmonic biosensors demonstrate an outstanding performance ranking themselves among best candidates for different applications. However, their sensitivity is still limited that prevents further expansion.
View Article and Find Full Text PDF