The global pandemic of COVID-19 and emerging antimicrobial drug resistance highlights the need for sustainable technology that enables more preparedness and active control measures. It is thus important to have a reliable solution to avert the present situations as well as preserve nature for habitable life in the future. One time use of PPE kits is promoting the accumulation of nondegradable waste, which may pose an unforeseen challenge in the future.
View Article and Find Full Text PDFThe WHO estimates an average of 10 million deaths per year due to the increasing number of infections and the predominance of drug resistance. To improve clinical outcomes and contain the spread of infections, the development of newer diagnostic tools is imperative to reduce the time and cost involved to reach the farthest population. The current study focuses on the development of a point-of-care technology that uses crystal violet entrapped, lectin functionalized chitosan nanoparticles to detect the presence of clinically relevant bacterial infections.
View Article and Find Full Text PDFAs declared by WHO, antimicrobial resistance (AMR) is a high priority issue with a pressing need to develop impactful technologies to curb it. The rampant and inappropriate use of antibiotics due to the lack of adequate and timely diagnosis is a leading cause behind AMR evolution. Unfortunately, populations with poor economic status and those residing in densely populated areas are the most affected ones, frequently leading to emergence of AMR pathogens.
View Article and Find Full Text PDFGlobally, rapid development of antibiotic resistance amongst pathogens has led to limited treatment options and high indirect costs to health management. There is a need to avoid misuse of available antibiotics and to develop rapid, affordable and accessible diagnostic technologies to detect drug resistance even in resource limited settings. This study reports the development of instrument-free point-of-care devices for detection of antibiotic resistance for rapid diagnosis of drug resistance in the penicillin, cephalosporin and carbapenem groups of antibiotics.
View Article and Find Full Text PDFBiosynthesis of metallic nanoparticles has acquired particular attention due to its economic feasibility, low toxicity, and simplicity of the process. In this study, extracellular synthesis of silver and zinc nanoparticle was carried out by isolated from the effluent of an electroplating industry in Mumbai. Characterization studies revealed synthesis of 40 and 60 nm nanoparticles of silver (AgNP) and zinc (ZnNP), respectively, with distinct morphology as observed in TEM and its crystalline nature confirmed by XRD.
View Article and Find Full Text PDFThe aim of this study was to isolate and screen bacteria from soil and effluent of electroplating industries for the synthesis of silver nanoparticles and characterize the potential isolate. Soil and effluent of electroplating industries from Mumbai were screened for bacteria capable of synthesizing silver nanoparticles. From two soils and eight effluent samples 20 bacterial isolates were obtained, of these, one was found to synthesize silver nanoparticles.
View Article and Find Full Text PDF