Rising blast-percentage or secondary (s) AML transformation (sAML) in MPNs leads to JAK inhibitor (JAKi) therapy-resistance and poor survival. Here, we demonstrate that the CDK7 inhibitor (CDK7i) SY-5609 treatment depletes phenotypically-characterized post-MPN-sAML stem/progenitor cells. In the cultured post-MPN sAML SET2 and HEL as well as patient-derived (PD) post-MPN-sAML cells, SY-5609 treatment inhibited growth and induced lethality, while sparing normal cells.
View Article and Find Full Text PDFAML with chromosomal alterations involving 3q26 overexpresses the transcription factor (TF) EVI1, associated with therapy refractoriness and inferior overall survival in AML. Consistent with a CRISPR screen highlighting BRD4 dependency, treatment with BET inhibitor (BETi) repressed EVI1, LEF1, c-Myc, c-Myb, CDK4/6, and MCL1, and induced apoptosis of AML cells with 3q26 lesions. Tegavivint (TV, BC-2059), known to disrupt the binding of nuclear β-catenin and TCF7L2/LEF1 with TBL1, also inhibited co-localization of EVI1 with TBL1 and dose-dependently induced apoptosis in AML cell lines and patient-derived (PD) AML cells with 3q26.
View Article and Find Full Text PDFPurpose: Treatment outcomes in patients with relapsed/refractory (R/R) myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) remains dismal. On the basis of both extensive preclinical data and emerging clinical data, treatment with bromodomain and extra-terminal domain inhibitors (BETi) is a potential approach for patients with high-risk myeloid malignancies.
Patients And Methods: We conducted a phase I trial to study the safety and efficacy of PLX51107 (BETi) and azacitidine combination therapy in patients with R/R AML and high-risk (HR) MDS and studied mechanisms of resistance to the combination therapy.
Monotherapy with Menin inhibitor (MI), e.g., SNDX-5613, induces clinical remissions in patients with relapsed/refractory AML harboring MLL1-r or mtNPM1, but most patients either fail to respond or eventually relapse.
View Article and Find Full Text PDFIn AML with NPM1 mutation causing cytoplasmic dislocation of NPM1, treatments with Menin inhibitor (MI) and standard AML chemotherapy yield complete remissions. However, the causal and mechanistic linkage of mtNPM1 to the efficacy of these agents has not been definitively established. Utilizing CRISPR-Cas9 editing to knockout (KO) or knock-in a copy of mtNPM1 in AML cells, present studies demonstrate that KO of mtNPM1 from AML cells abrogates sensitivity to MI, selinexor (exportin-1 inhibitor), and cytarabine.
View Article and Find Full Text PDFPurpose: The combination of venetoclax and 5-azacitidine (5-AZA) for older or unfit patients with acute myeloid leukemia (AML) improves remission rates and survival compared with 5-AZA alone. We hypothesized that the addition of venetoclax to cladribine (CLAD)/low-dose araC (low-dose cytarabine [LDAC]) alternating with 5-AZA backbone may further improve outcomes for older patients with newly diagnosed AML.
Methods: This is a phase II study investigating the combination of venetoclax and CLAD/LDAC alternating with venetoclax and 5-AZA in older (≥ 60 years) or unfit patients with newly diagnosed AML.
Treatment with Menin inhibitor (MI) disrupts the interaction between Menin and MLL1 or MLL1-fusion protein (FP), inhibits HOXA9/MEIS1, induces differentiation and loss of survival of AML harboring MLL1 re-arrangement (r) and FP, or expressing mutant (mt)-NPM1. Following MI treatment, although clinical responses are common, the majority of patients with AML with MLL1-r or mt-NPM1 succumb to their disease. Pre-clinical studies presented here demonstrate that genetic knockout or degradation of Menin or treatment with the MI SNDX-50469 reduces MLL1/MLL1-FP targets, associated with MI-induced differentiation and loss of viability.
View Article and Find Full Text PDFBlastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare, aggressive neoplasm derived from plasmacytoid dendritic cells. While advances in understanding the pathophysiology of the disease have been made, integrated systematic analyses of the spectrum of immunophenotypic and molecular alterations in real-world clinical cases remain limited. We performed mutation profiling of 50 BPDCN cases and assessed our findings in the context of disease immunophenotype, cytogenetics, and clinical characteristics.
View Article and Find Full Text PDFThe majority of RUNX1 mutations in acute myeloid leukemia (AML) are missense or deletion-truncation and behave as loss-of-function mutations. Following standard therapy, AML patients expressing mtRUNX1 exhibit inferior clinical outcome than those without mutant RUNX1. Studies presented here demonstrate that as compared with AML cells lacking mtRUNX1, their isogenic counterparts harboring mtRUNX1 display impaired ribosomal biogenesis and differentiation, as well as exhibit reduced levels of wild-type RUNX1, PU.
View Article and Find Full Text PDFThere is an unmet need to overcome nongenetic therapy-resistance to improve outcomes in AML, especially post-myeloproliferative neoplasm (MPN) secondary (s) AML. Studies presented describe effects of genetic knockout, degradation or small molecule targeted-inhibition of GFI1/LSD1 on active enhancers, altering gene-expressions and inducing differentiation and lethality in AML and (MPN) sAML cells. A protein domain-focused CRISPR screen in LSD1 (KDM1A) inhibitor (i) treated AML cells, identified BRD4, MOZ, HDAC3 and DOT1L among the codependencies.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
August 2021
The central role of -catenin in the Wnt pathway makes it an attractive therapeutic target for cancers driven by aberrant Wnt signaling. We recently developed a small-molecule inhibitor, BC-2059, that promotes apoptosis by disrupting the -catenin/transducin -like 1 (TBL1) complex through an unknown mechanism of action. In this study, we show that BC-2059 directly interacts with high affinity for TBL1 when in complex with -catenin.
View Article and Find Full Text PDFAllosteric inhibitors of mutant IDH1 or IDH2 induce terminal differentiation of the mutant leukemic blasts and provide durable clinical responses in approximately 40% of acute myeloid leukemia (AML) patients with the mutations. However, primary resistance and acquired resistance to the drugs are major clinical issues. To understand the molecular underpinnings of clinical resistance to IDH inhibitors (IDHi), we perform multipronged genomic analyses (DNA sequencing, RNA sequencing and cytosine methylation profiling) in longitudinally collected specimens from 60 IDH1- or IDH2-mutant AML patients treated with the inhibitors.
View Article and Find Full Text PDFEcotropic viral integration site 1 (Evi1) was discovered in 1988 as a common site of ecotropic viral integration resulting in myeloid malignancies in mice. EVI1 is an oncogenic zinc-finger transcription factor whose overexpression contributes to disease progression and an aggressive phenotype, correlating with poor clinical outcome in myeloid malignancies. Despite progress in understanding the biology of EVI1 dysregulation, significant improvements in therapeutic outcome remain elusive.
View Article and Find Full Text PDFDespite promising results with FLT3 inhibitors (FLT3i), response durations remain short. We studied pretreatment and relapse bone marrow samples from patients with -mutated AML treated with FLT3i-based therapies (secondary resistance cohort), and pretreatment bone marrow samples from patients with no response to FLT3i-based therapies (primary resistance cohort). Targeted next generation sequencing at relapse identified emergent mutations involving on-target , epigenetic modifiers, pathway, and less frequently , and .
View Article and Find Full Text PDFRichter Transformation (RT) develops in CLL as an aggressive, therapy-resistant, diffuse large B cell lymphoma (RT-DLBCL), commonly clonally-related (CLR) to the concomitant CLL. Lack of available pre-clinical human models has hampered the development of novel therapies for RT-DLBCL. Here, we report the profiles of genetic alterations, chromatin accessibility and active enhancers, gene-expressions and anti-lymphoma drug-sensitivity of three newly established, patient-derived, xenograft (PDX) models of RT-DLBCLs, including CLR and clonally-unrelated (CLUR) to concomitant CLL.
View Article and Find Full Text PDFThe promising activity of BET protein inhibitors (BETi's) is compromised by adaptive or innate resistance in acute myeloid leukemia (AML). Here, modeling of BETi-persister/resistance (BETi-P/R) in human postmyeloproliferative neoplasm (post-MPN) secondary AML (sAML) cells demonstrated accessible and active chromatin in specific superenhancers/enhancers, which was associated with increased levels of nuclear β-catenin, TCF7L2, JMJD6, and c-Myc in BETi-P/R sAML cells. Following BETi treatment, c-Myc levels were rapidly restored in BETi-P/R sAML cells.
View Article and Find Full Text PDF