Publications by authors named "Kapil Ganorkar"

We developed a novel chromogenic reagent and sensor by selective approach, for the detection and identification of dichlorvos, which we tested with the thin layer chromatography method. For the first time, we reported in situ-generated glyoxal as a hydrolysis product, which then interacts with isoniazid to produce a yellow-colored cyclic compound. We used well-known spectroscopic techniques to confirm the chemical identity of the final product.

View Article and Find Full Text PDF

Elucidation of the photophysical and biochemical properties of small molecules can facilitate their applications as prospective therapeutic imaging (theragnostic) agents. Herein, we demonstrate the luminescence behavior of a strategically designed potential therapeutic thiosemicarbazone derivative, ()-1-(4-(diethylamino)-2-hydroxybenzylidene)-4,4-dimethylthiosemicarbazide (DAHTS), accompanied by the illustration of its solvation and solvation dynamics using spectroscopic techniques and exploring its promising antitumor activities by adopting the necessary biochemical assays. Solvent-dependent photophysical properties, namely UV-vis absorption, fluorescence emission, and excitation profiles, concentration-dependent studies, and time-resolved fluorescence decays, serve as footprints to explain the existence of DAHTS monomers, its excited-state intramolecular proton transfer (ESIPT) product, and dimeric and aggregated forms.

View Article and Find Full Text PDF

The use of saccharin in food products attracts much attention as it involves the risk of lethal allergies and many protein aggregation diseases. However, its role in protein aggregation has not been explored to date. This study embodies the effect of artificial sweeteners on HEWL in the absence and presence of commonly available natural products such as curcumin and EGCG.

View Article and Find Full Text PDF

Human Serum Albumin (HSA) is the most important protein in human blood plasma and can acts as a major transporting agent for various drug molecules with flexible binding interaction. To elucidate the interaction of a newly designed potential anticancer thiosemicarbazone based luminophore (E)-1-(4-(diethylamino)-2-hydroxybenzylidene)-4,4-dimethyl-thiosemicarbazide (DAHTS) with HSA under physiological condition, in vitro optical spectroscopic experiments viz UV-Vis absorption, steady state fluorescence, fluroscence anisotropy, time resolved fluorscence (TRF) and cicular dichroism (CD) spectroscopy have been scrutinised. The experimental findings have been corroborated with in silico molecular docking analysis and Molecular Dynamics (MD) simulation.

View Article and Find Full Text PDF

In this report we have disclosed the syntheses and properties of two new conjugated organic moieties bearing the same coordination sites but possessing different backbone rigidities and rotational flexibilities. Two new metallopolymers have been synthesized from the corresponding ligands under identical reaction conditions, and they have been thoroughly characterized through different techniques to understand the effect of backbone rigidity on the evolution of different properties in these metallopolymers. A FESEM micrograph of the rigid metallopolymer confirms the formation of a rigid nanorod type structure, while long agglomerated nanofiber strands are visible on the substrate in the case of the flexible analogue.

View Article and Find Full Text PDF

Azapodophyllotoxin is a new class of anti-tumor agent with brilliant therapeutic activity and understanding its physicochemical nature in bio-mimetic microenvironments may provide substantial importance in context of its intercellular localization, efficacy as well as delivery. The present work epitomizes environment-sensitive fluorescence modulation of a prodigy, 4-(2-Hydroxyethyl)-10-phenyl-3,4,6,7,8,10- hexahydro-1H-cyclopenta[g]furo[3,4-b]quinoline-1-one (HPFQ) from the class of anti-cancer agent Azapodophyllotoxin, in differently charged model bio-mimetic micellar microenvironment of cationic CTAB, anionic SDS and neutral Triton X-100 using UV-visible absorption, steady state fluorescence, time-resolved fluorescence and fluorescence anisotropy studies. As a distinct phenomenon, anticancer HPFQ exhibits prolific fluorescence in solvents of varying polarity, originating from a mixed contribution of locally excited, charge transfer and excimer emission.

View Article and Find Full Text PDF

Bovine serum albumin (BSA) is a widely recognized plasma protein for its ubiquitous function as one of the paramount transporter of different drugs and enzymes inside biological systems. HPFQ, a member of azapodophyllotoxin family, has been observed to be highly bioactive against a majority of cancer cell lines; while subsequently showing impressive fluorescent properties throughout the polarity scale. However, further pursuit into compliance of this bioactive fluorophore with carrier protein remains imperative for excavating its suitable transporter inside human body.

View Article and Find Full Text PDF

Molecular switches are valuable tools for the detection of many chemical and biological processes. On the other hand, Schiff bases are known for their simplicity in synthesis and their enormous biochemical applications. In this scenario, when a strategically designed Schiff base acts as a molecular switch in biomimetic environments drags inevitable attention.

View Article and Find Full Text PDF

Human serum albumin is perceived to be the most abundant protein in human blood plasma and functions as a major carrier of different enzymes and drugs inside human body. The present article puts in an effort to demonstrate the attitude adopted by human serum albumin towards a potential therapeutic luminophore 4-(2-Hydroxyethyl)-10-phenyl-3,4,6,7,8,10-hexahydro-1H-cyclopenta[g]furo[3,4-b]quinoline-1-one (HPFQ). HPFQ is a prodigy from azapodophyllotoxin class of compounds, which have been synthesized from the perspective of improved bioactivity than its prologue podophyllotoxins.

View Article and Find Full Text PDF