Prenatal screening (PNS) for Sickle Cell Disease (SCD) offers a potential avenue for informed reproductive choices and the sickle elimination initiative of the Government of India. The objective of the study was to explore perceptions and ethical dilemmas surrounding prenatal screening for sickle cell disease and subsequent termination of pregnancy among pregnant women and key stakeholders from the tribal region of Gujarat. The study employed sequential mixed-methods research, embedding a participatory research approach.
View Article and Find Full Text PDFEngineered repeat proteins have proven to be a fertile ground for studying the competition between folding, misfolding and transient aggregation of tethered protein domains. We examine the interplay between folding and inter-domain interactions of engineered FiP35 WW domain repeat proteins with n = 1 through 5 repeats. We characterize protein expression, thermal and guanidium melts, as well as laser T-jump kinetics.
View Article and Find Full Text PDFIn-cell protein stability is increased by crowding, but can be reduced by destabilizing surface interactions. Will different denaturation techniques yield similar trends? Here, we apply pressure and thermal denaturation to green fluorescent protein/ReAsH-labeled yeast phosphoglycerate kinase (PGK) in Escherichia coli cells. Pressure denaturation is more two state-like in E.
View Article and Find Full Text PDFIntermediate states in protein folding may slow folding, and sometimes can provide a starting point for aggregation. Recently, the FBP28 WW domain of the formin-binding protein was used as a model for a computational study of the origin and prevention of intermediate-state formation, and local hydrophobic interactions of Leu26 were implicated. Here, we combine new simulations over a broad temperature range with experimental temperature-jump data to study this site in more detail.
View Article and Find Full Text PDFIn vitro, computational, and theoretical studies of protein folding have converged to paint a rich and complex energy landscape. This landscape is sensitively modulated by environmental conditions and subject to evolutionary pressure on protein function. Of these environments, none is more complex than the cell itself, where proteins function in the cytosol, in membranes, and in different compartments.
View Article and Find Full Text PDFThe interior of a cell interacts differently with proteins than a dilute buffer because of a wide variety of macromolecules, chaperones, and osmolytes that crowd and interact with polypeptide chains. We compare folding of fluorescent constructs of protein VlsE among three environments inside cells. The nucleus increases the stability of VlsE relative to the cytoplasm, but slows down folding kinetics.
View Article and Find Full Text PDFThe fungicide dodine combines the cooperative denaturation properties of guanidine with the mM denaturation activity of SDS. It was previously tested only on two small model proteins. Here we show that it can be used as a chemical denaturant for phosphoglycerate kinase (PGK), a much larger two-domain enzyme.
View Article and Find Full Text PDFIt is frequently assumed that fluorescent protein tags used in biological imaging experiments are minimally perturbing to their host protein. As in-cell experiments become more quantitative and measure rates and equilibrium constants, rather than just "on-off" activity or the presence of a protein, it becomes more important to understand such perturbations. One criterion for a protein modification to be a perturbation is additivity of two perturbations (a linear effect on the protein free energy).
View Article and Find Full Text PDFFast-folding WW domains are among the best-characterized systems for comparing experiments and simulations of protein folding. Recent microsecond-resolution experiments and long duration (totaling milliseconds) single-trajectory modeling have shown that even mechanistic changes in folding kinetics due to mutation can now be analyzed. Thus, a comprehensive set of experimental data would be helpful to benchmark the predictions made by simulations.
View Article and Find Full Text PDFStochastic resonance is a mechanism whereby a weak signal becomes detectable through the addition of noise. It is common in many macroscopic biological phenomena, but here we ask whether it can be observed in a microscopic biological phenomenon, protein folding. We investigate the folding kinetics of the protein VlsE, with a folding relaxation time of about 0.
View Article and Find Full Text PDFJ Phys Chem A
December 2015
Hydrogen-bonded complexes of C2H2 and phenylacetylene (PhAc) were studied using matrix isolation infrared spectroscopy and quantum chemical computations. Both C2H2 and PhAc, being potential proton donors, the question arises as to which of the two species would be the proton donor in the PhAc-C2H2 complex; a question that this work primarily addresses. The molecular structures, vibrational frequencies, and interaction energies of the PhAc-C2H2 complexes were calculated at the M06-2X and MP2 levels of theory, employing both 6-311++G(d,p) and aug-cc-pVDZ basis sets.
View Article and Find Full Text PDFProteins are subject to a variety of stresses in biological organisms, including pressure and temperature, which are the easiest stresses to simulate by molecular dynamics. We discuss the effect of pressure and thermal stress on very-fast-folding model proteins, whose in vitro folding can be fully simulated on computers and compared with experiments. We then discuss experiments that can be used to subject proteins to low- and high-temperature unfolding, as well as low- and high-pressure unfolding.
View Article and Find Full Text PDF