Proc Natl Acad Sci U S A
February 2015
Cell-generated forces produce a variety of tissue movements and tissue shape changes. The cytoskeletal elements that underlie these dynamics act at cell-cell and cell-ECM contacts to apply local forces on adhesive structures. In epithelia, force imbalance at cell contacts induces cell shape changes, such as apical constriction or polarized junction remodeling, driving tissue morphogenesis.
View Article and Find Full Text PDFA combined experimental and theoretical study is carried out to probe the rotational behavior of red blood cells (RBCs) in a single beam optical trap. We induce shape changes in RBCs by altering the properties of the suspension medium in which live cells float. We find that certain shape anisotropies result in the rotation of optically trapped cells.
View Article and Find Full Text PDFA laser-based method has been developed for experimentally probing single red blood cell (RBC) buckling and determining RBC membrane rigidity. Our method combines a liquid flow cell, fluorescence microscopy, and an optical-trap to facilitate simple measurements of the shear modulus and buckling properties of single RBCs, under physiological conditions. The efficacy of the method is illustrated by studying buckling behavior of normal and Plasmodium-infected RBCs, and the effect of Plasmodium falciparum-conditioned medium on normal, uninfected cells.
View Article and Find Full Text PDF