Background/aim: The aim of this study was to compare the effects of single and repeated trimetazidine (TMZ) administration against warm hepatic ischemia/reperfusion (I/R) injury and to explore the possible mechanisms affected by TMZ.
Materials And Methods: Wistar rats were divided into 4 groups (n = 6). Sham: rats were subjected to dissection.
Background: Endoplasmic reticulum (ER) and mitochondria have been implicated in the pathology of renal ischemia/reperfusion (I/R). In the present study, we investigated whether the use of ischemic postconditioning (IPostC) and trimetazidine (TMZ) separately or combined could reduce ER stress and mitochondria damage after renal ischemia.
Methods: Kidneys of Wistar rats were subjected to 60-min of warm ischemia followed by 120-min of reperfusion (I/R group, n = 6), or to 6 cycles of ischemia/reperfusion (10-s each cycle) just after 60-min of warm ischemia (IPostC group, n = 6), or to i.
Background: Although recent studies indicate that renal ischemic preconditioning (IPC) protects the kidney from ischemia-reperfusion (I/R) injury, the precise protective mechanism remains unclear. In the current study, we investigated whether early IPC could upregulate hypoxia inducible transcription factor-1α (HIF-1α) expression and could reduce endoplasmic reticulum (ER) stress after renal I/R and whether pharmacological inhibition of nitric oxide (NO) production would abolish these protective effects.
Methods: Kidneys of Wistar rats were subjected to 60 min of warm ischemia followed by 120 min of reperfusion (I/R group), or to 2 preceding cycles of 5 min ischemia and 5 min reperfusion (IPC group), or to intravenously injection of NG-nitro-L-arginine methylester (L-NAME, 5 mg/kg) 5 min before IPC (L-NAME+IPC group).