Photoelectric dyes, which absorb light and convert photon energy to electric potentials, were shown to stimulate retinal neurons in culture. One of these dyes coupled with polyethylene film surface, as a prototype of retinal prostheses, could induce intracellular calcium elevation in chick embryonic retinal tissues. In this study, we used retinal cells from chick embryos in which no photoreceptor outer segments yet developed, and assessed cell adhesiveness and response to the original and modified types of our retinal prostheses.
View Article and Find Full Text PDFWe developed a new hybrid gel phantom using carrageenan and gellan gum for the purpose of visualizing three-dimensional temperature distribution. The phantom, which contains carrageenan, gellan gum, non-ionic surface active agent, potassium chloride, n-butanol, sodium azide, and water, shows good transparency at room temperature, and has the advantage that the heated region becomes white and opaque due to segregation of the surface active agent. Carrageenan and gellan gum were added to improve the transparency and fragility of the hybrid gel.
View Article and Find Full Text PDFPhotoelectric dyes, which absorb light and convert photon energy to electric potentials, have been previously shown to stimulate retinal neurons in culture. In this study, a photoelectric dye was coupled to a polyethylene film surface and tested in vitro using retinal tissues from chick embryos at the 12-day embryonic stage, at which time outer segments of retinal photoreceptor cells have not yet developed. Carboxyl moieties were introduced to a polyethylene film surface by fuming nitric acid, and then a photoelectric dye, 2-[2-[4-(dibutylamino)phenyl]ethenyl]-3-carboxymethylbenzothiazolium bromide, was coupled to the film through amide linkage.
View Article and Find Full Text PDF