The operation of modern wastewater treatment facilities is a balancing act in which a multitude of variables are controlled to achieve a wide range of objectives, many of which are conflicting. This is especially true within secondary activated sludge systems, where significant research and industry effort has been devoted to advance control optimization strategies, both domain-driven and data-driven. Among data-driven control strategies, reinforcement learning (RL) stands out for its ability to achieve better than human performance in complex environments.
View Article and Find Full Text PDFMercury (Hg) methylation is a microbially mediated process that produces methylmercury (MeHg), a bioaccumulative neurotoxin. A highly conserved gene pair, hgcAB, is required for Hg methylation, which provides a basis for identifying Hg methylators and evaluating their genomic composition. In this study, we conducted a large-scale omics analysis in which 281 metagenomic freshwater and marine sediment samples from 46 geographic locations across the globe were queried.
View Article and Find Full Text PDFThe goal of this study was to explore the role of non-mercury (Hg) methylating taxa in mercury methylation and to identify potential links between elemental cycles and Hg methylation. Statistical approaches were utilized to investigate the microbial community and biochemical functions in relation to methylmercury (MeHg) concentrations in marine and freshwater sediments. Sediments were collected from the methylation zone (top 15 cm) in four Hg-contaminated sites.
View Article and Find Full Text PDFAcid mine drainage (AMD) and municipal wastewater (MWW) are commonly co-occurring waste streams in mining regions. Co-treating AMD at existing wastewater facilities represents an innovative solution for simultaneous AMD reclamation and improved MWW treatment. However, unknowns related to biological processes and continuous treatment performance block full-scale use.
View Article and Find Full Text PDFThree dimensional printing has emerged as a widely acceptable strategy for the fabrication of mammalian cell laden constructs with complex microenvironments for tissue engineering and regenerative medicine. More recently 3D printed living materials containing microorganisms have been developed and matured into living biofilms. The potential for engineered 3D biofilms as in vitro models for biomedical applications, such as antimicrobial susceptibility testing, and environmental applications, such as bioleaching, bioremediation, and wastewater purification, is extensive but the need for an in-depth understanding of the structure-function relationship between the complex construct and the microorganism response still exists.
View Article and Find Full Text PDFEnviron Sci Technol
December 2023
Cyanobacterial harmful algal blooms (CyanoHABs) pose serious risks to inland water resources. Despite advancements in our understanding of associated environmental factors and modeling efforts, predicting CyanoHABs remains challenging. Leveraging an integrated water quality data collection effort in Iowa lakes, this study aimed to identify factors associated with hazardous microcystin levels and develop one-week-ahead predictive classification models.
View Article and Find Full Text PDFTreatment of wastewater using activated sludge relies on several complex, nonlinear processes. While activated sludge systems can provide high levels of treatment, including nutrient removal, operating these systems is often challenging and energy intensive. Significant research investment has been made in recent years into improving control optimization of such systems, through both domain knowledge and, more recently, machine learning.
View Article and Find Full Text PDFEnhanced biological phosphorus removal (EBPR) performance and microbial community dynamics during dry and wet-weather conditions of a full-scale treatment plant was evaluated by converting a section of activated sludge basins using low-cost operational modifications into an anoxic/anaerobic zone to promote EBPR. Two trains of the activated sludge system at the Des Moines, Iowa Metropolitan Wastewater Reclamation Facility were used for the study with one train modified for EBPR, and the other remained as nitrification-only for comparison. In addition to measuring the modification effectiveness for phosphorus removal, performance was compared during dry and wet weather conditions over the course of two summer seasons to improve understanding of wet and dry weather dynamics for EBPR.
View Article and Find Full Text PDFFerrate is a promising, emerging water treatment technology. However, there has been limited research on the application of ferrate in a water reuse paradigm. Recent literature has shown that ferrate oxidation of target contaminants could be improved by "activation" with the addition of reductants or acid.
View Article and Find Full Text PDFBiological mechanisms of disinfection not only vary by disinfectant but also remain not well understood. We investigated the physiological and transcriptomic response of Escherichia coli at late stationary phase to ferrate and monochloramine in amended lake water. Although ferrate and monochloramine treatments similarly reduced culturable cell concentrations by 3-log, 64% and 11% of treated cells were viable following monochloramine and ferrate treatment, respectively.
View Article and Find Full Text PDFMicrocystins, a group of cyanotoxins produced by cyanobacterial strains, have become a significant microbial hazard to human and animal health due to increases in the frequency and intensity of cyanobacterial harmful algal blooms (CyanoHABs). Many studies have explored the correlation between microcystin concentrations and abundances of toxin-producing genes (e.g.
View Article and Find Full Text PDFIn order to evaluate the efficacy of using reduced sulfur species in lieu of conventional substrates, a sequencing batch reactor (SBR) was used to develop an autotrophic denitrifying culture which in turn was used to seed a static granular bed reactor (SGBR) for continuous flow treatment. Both bioreactors were able to quickly acclimate to the anoxic environment and achieve stable autotrophic denitrification within several weeks of being placed in operation. The seed for the SBR was obtained from operating basins at the Cedar Rapids plant.
View Article and Find Full Text PDFBackground: Several studies have suggested that global DNA methylation in circulating white blood cells (WBC) is associated with breast cancer risk.
Methods: To address conflicting results and concerns that the findings for WBC DNA methylation in some prior studies may reflect disease effects, we evaluated the relationship between global levels of WBC DNA methylation in white blood cells and breast cancer risk in a case-control study nested within the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO) cohort. A total of 428 invasive breast cancer cases and 419 controls, frequency matched on age at entry (55-59, 60-64, 65-69, ≥70 years), year of entry (on/before September 30, 1997, on/after October 1, 1997) and period of DNA extraction (previously extracted, newly extracted) were included.
Mercury (Hg) associated with coal ash is an environmental concern, particularly if the release of coal ash to the environment is associated with the conversion of inorganic Hg to methylmercury (MeHg), a bioaccumulative form of Hg that is produced by anaerobic microorganisms. In this study, sediment slurry microcosm experiments were performed to understand how spilled coal ash might influence MeHg production in anaerobic sediments of an aquatic ecosystem. Two coal ash types were used: (1) a weathered coal ash; and (2) a freshly collected, unweathered fly ash that was relatively enriched in sulfate and Hg compared to the weathered ash.
View Article and Find Full Text PDFPseudomonas aeruginosa is a ubiquitous environmental bacterium and an opportunistic pathogen with the ability to rapidly develop multidrug resistance under selective pressure. Previous work demonstrated that upon exposure to the environmental contaminant pentachlorophenol (PCP), P. aeruginosa PAO1 increases expression of multiple multidrug efflux pumps, including the MexAB-OprM pump.
View Article and Find Full Text PDFBacteria are essential components of all natural and many engineered systems. The most active fractions of bacteria are now recognized to occur as biofilms, where cells are attached and surrounded by a secreted matrix of "sticky" extracellular polymeric substances. Recent investigations have established that significant accumulation of nanoparticles (NPs) occurs in aquatic biofilms.
View Article and Find Full Text PDFDespite the growing use of carbon nanomaterials in commercial applications, very little is known about the fate of these nanomaterials once they are released into the environment. The carbon-carbon bonding of spherical sp(2) hybridized fullerene (C60) forms a strong and resilient material that resists biodegradation. Moreover, C60 is widely reported to be bactericidal.
View Article and Find Full Text PDFAs nanoparticles (NPs) enter into biological systems, they are immediately exposed to a variety and concentration of proteins. The physicochemical interactions between proteins and NPs are influenced by the surface properties of the NPs. To identify the effects of NP surface heterogeneity, the interactions between bovine serum albumin (BSA) and gold NPs (AuNPs) with similar chemical composition but different surface structures were investigated.
View Article and Find Full Text PDFThe effectiveness of genetic bioaugmentation relies on efficient plasmid transfer between donor and recipient cells as well as the plasmid's phenotype in the recipient cell. In the present study, the effects of varying organic carbon substrates, initial recipient-to-donor cell density ratios, and mixtures of known recipient bacterial strains on the conjugation and function of a TOL plasmid were tested in sterile soil slurry batch reactors. The presence of soil organic carbon was sufficient in ensuring TOL plasmid transconjugant occurrence (up to 2.
View Article and Find Full Text PDFGenetic bioaugmentation is an in situ bioremediation method that stimulates horizontal transfer of catabolic plasmids between exogenous donor cells and indigenous bacteria to increase the biodegradation potential of contaminants. A critical outcome of genetic bioaugmentation is the expression of an active catabolic phenotype upon plasmid conjugation. Using a pWW0-derivative TOL plasmid, we showed that certain genetic characteristics of the recipient bacteria, including genomic guanine-cytosine (G + C) content and phylogeny, may limit the expression of the transferred catabolic pathway.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2013
Conjugation of catabolic plasmids in contaminated environments is a naturally occurring horizontal gene transfer phenomenon, which could be utilized in genetic bioaugmentation. The potentially important parameters for genetic bioaugmentation include gene regulation of transferred catabolic plasmids that may be controlled by the genetic characteristics of transconjugants as well as environmental conditions that may alter the expression of the contaminant-degrading phenotype. This study showed that both genomic guanine-cytosine contents and phylogenetic characteristics of transconjugants were important in controlling the phenotype functionality of the TOL plasmid.
View Article and Find Full Text PDFHorizontal gene transfer (HGT) of plasmids is a naturally occurring phenomenon which could be manipulated for bioremediation applications. Specifically, HGT may prove useful to enhance bioremediation through genetic bioaugmentation. However, because the transfer of a plasmid between donor and recipient cells does not always result in useful functional phenotypes, the conditions under which HGT events result in enhanced degradative capabilities must first be elucidated.
View Article and Find Full Text PDF