Publications by authors named "Kaoru Funabashi"

RET receptor tyrosine kinase is activated in various cancers (lung, thyroid, colon and pancreatic, among others) through oncogenic fusions or gain-of-function single-nucleotide variants. Small-molecule RET kinase inhibitors became standard-of-care therapy for advanced malignancies driven by RET. The therapeutic benefit of RET inhibitors is limited, however, by acquired mutations in the drug target as well as brain metastasis, presumably due to inadequate brain penetration.

View Article and Find Full Text PDF

Deregulating fibroblast growth factor receptor (FGFR) signaling is a promising strategy for cancer therapy. Herein, we report the discovery of compound (TAS-120, futibatinib), a potent and selective covalent inhibitor of FGFR1-4, starting from a unique dual inhibitor of mutant epidermal growth factor receptor and FGFR (compound ). Compound inhibited all four families of FGFRs in the single-digit nanomolar range and showed high selectivity for over 387 kinases.

View Article and Find Full Text PDF

Genetic alterations in human epidermal growth factor receptor type 2 (HER2)/epidermal growth factor receptor (EGFR) are commonly associated with breast and lung cancers and glioblastomas. Cancers with avian erythroblastosis oncogene B (ERBB) deregulation are highly metastatic and can cause primary brain tumors. Currently, no pan-ERBB inhibitor with remarkable brain penetration is available.

View Article and Find Full Text PDF

FGFR signaling is deregulated in many human cancers, and FGFR is considered a valid target in FGFR-deregulated tumors. Here, we examine the preclinical profile of futibatinib (TAS-120; 1-[(3S)-[4-amino-3-[(3,5-dimethoxyphenyl)ethynyl]-1H-pyrazolo[3, 4-d] pyrimidin-1-yl]-1-pyrrolidinyl]-2-propen-1-one), a structurally novel, irreversible FGFR1-4 inhibitor. Among a panel of 296 human kinases, futibatinib selectively inhibited FGFR1-4 with IC values of 1.

View Article and Find Full Text PDF

Despite the worldwide approval of three generations of EGFR tyrosine kinase inhibitors (TKI) for advanced non-small cell lung cancers with mutations, no TKI with a broad spectrum of activity against all clinically relevant mutations is currently available. In this study, we sought to evaluate a covalent mutation-specific EGFR TKI, TAS6417 (also named CLN-081), with the broadest level of activity against mutations with a prevalence of ≥1%. Lung cancer and genetically engineered cell lines, as well as murine xenograft models were used to evaluate the efficacy of TAS6417 and other approved/in-development EGFR TKIs (erlotinib, afatinib, osimertinib, and poziotinib).

View Article and Find Full Text PDF
Article Synopsis
  • TAS0728 is a novel compound that selectively binds to HER2 and inhibits its kinase activity, making it a potential new treatment for HER2-activated cancers.* -
  • Unlike other HER2 inhibitors, TAS0728 is resistant to high levels of ATP, demonstrating high specificity for HER2 over similar proteins like wild-type EGFR.* -
  • In studies, TAS0728 effectively reduced HER2 phosphorylation and induced cancer cell death, showing promising results in mouse models without significant toxicity, warranting further clinical trials.*
View Article and Find Full Text PDF

The molecular chaperone heat shock protein 90 (HSP90) is a promising target for cancer therapy, as it assists in the stabilization of cancer-related proteins, promoting cancer cell growth, and survival. A novel series of HSP90 inhibitors were discovered by structure-activity relationship (SAR)-based optimization of an initial hit compound 11a having a 4-(4-(quinolin-3-yl)-1 H-indol-1-yl)benzamide structure. The pyrazolo[3,4- b]pyridine derivative, 16e (TAS-116), is a selective inhibitor of HSP90α and HSP90β among the HSP90 family proteins and exhibits oral availability in mice.

View Article and Find Full Text PDF

p70 ribosomal S6 kinase (p70S6K) is a downstream effector of the mTOR signaling pathway involved in cell proliferation, cell growth, cell-cycle progression, and glucose homeostasis. Multiple phosphorylation events within the catalytic, autoinhibitory, and hydrophobic motif domains contribute to the regulation of p70S6K. We report the crystal structures of the kinase domain of p70S6K1 bound to staurosporine in both the unphosphorylated state and in the 3'-phosphoinositide-dependent kinase-1-phosphorylated state in which Thr-252 of the activation loop is phosphorylated.

View Article and Find Full Text PDF