Publications by authors named "Kaori Sampei"

It has been suggested that unoprostone isopropyl (UNO) has potent neuroprotective activity in the retina. The effect of sustained transscleral UNO delivery to the posterior segment of the eye on photoreceptor degeneration was evaluated. UNO was loaded into a device made of poly(ethyleneglycol) dimethacrylate by polydimethylsiloxane mold-based UV-curing.

View Article and Find Full Text PDF
Article Synopsis
  • A microfabricated device allows for the controlled release of two drugs, edaravone (EDV) and unoprostone (UNO), designed for simultaneous delivery to the retina.
  • This combined approach enhances retinal protection against light damage in rat models more effectively than using each drug separately.
  • The device presents a potentially safer alternative to traditional intravitreal injections for treating retinal diseases.
View Article and Find Full Text PDF

LIM-kinases (LIMKs) play crucial roles in various cell activities, including migration, division, and morphogenesis, by phosphorylating and inactivating cofilin. Using a bimolecular fluorescence complementation assay to detect the actin-cofilin interaction, we screened LIMK1 inhibitors and identified two effective inhibitors, damnacanthal (Dam) and MO-26 (a pyrazolopyrimidine derivative). These compounds have already been shown to inhibit Lck, a Src family tyrosine kinase.

View Article and Find Full Text PDF

Cofilin, a key regulator of actin filament dynamics, binds to G- and F-actin and promotes actin filament turnover by stimulating depolymerization and severance of actin filaments. In this study, cytochalasin D (CytoD), a widely used inhibitor of actin dynamics, was found to act as an inhibitor of the G-actin-cofilin interaction by binding to G-actin. CytoD also inhibited the binding of cofilin to F-actin and decreased the rate of both actin polymerization and depolymerization in living cells.

View Article and Find Full Text PDF

The bimolecular fluorescence complementation (BiFC) assay is a method for visualizing protein-protein interactions in living cells. To visualize the cofilin-actin interaction in living cells, a series of combinations of the N- and C-terminal fragments of Venus fused upstream or downstream of cofilin and actin were screened systematically. A new pair of split Venus fragments, Venus (1-210) fused upstream of cofilin and Venus (210-238) fused downstream of actin, was the most effective combination for visualizing the specific interaction between cofilin and actin in living cells.

View Article and Find Full Text PDF