Publications by authors named "Kaori Kitae"

RNAs undergo more than 300 modifications after transcription. Aberrations in RNA modifications can lead to diseases; their involvement in fetal development has been suggested. This study explored the RNA modifications related to fetal development in mice.

View Article and Find Full Text PDF

Transfer RNA (tRNA) modification is essential for proper protein translation, as these modifications play important roles in several biological functions and disease pathophysiologies. AlkB homolog 8 (ALKBH8) is one of the nine mammalian ALKBH family molecules known to regulate selenoprotein translation through the modification of the wobble uridine (U34) in tRNA; however, its specific biological roles remain unclear. In this study, we investigated the role of ALKBH8 using -knockout () mice, which were observed to have reduced 5-methoxycarbonylmethyluridine (mcm5U) and (S)-5-methoxycarbonylhydroxymethyluridine levels; notably, the mcm5U level was partially compensated only in the brain.

View Article and Find Full Text PDF

Epitranscriptomics studies the mechanisms of acquired RNA modifications. The epitranscriptome is dynamically regulated by specific enzymatic reactions, and the proper execution of these enzymatic RNA modifications regulates a variety of physiological RNA functions. However, the lack of experimental tools, such as antibodies for RNA modification, limits the development of epitranscriptomic research.

View Article and Find Full Text PDF

Three-dimensional (3D) cell culture, which provides an -like environment unlike the conventional two-dimensional (2D) cell culture, has attracted much attention from researchers. Although various 3D cell culture methods have been developed, information on a method using inorganic nanoclay is scant. Here, we report that hectorite, an inorganic layered silicate, can be used as an auxiliary material for 3D cell culture.

View Article and Find Full Text PDF

A group of RNA methylation enzymes is currently of interest as a new target for cancer therapy. Alpha-ketoglutarate-dependent dioxygenase B (AlkB) homolog 5 (ALKBH5) is an N -methyladenosine (m A) demethylation enzyme, and by high-throughput screening from pure small molecule compounds, we identified two novel inhibitors, Ena15 and Ena21, against it. Each compound showed either uncompetitive or competitive inhibition for 2-oxoglutarate (2OG).

View Article and Find Full Text PDF

Previously, we have revealed that the miR-130 family (miR-130b, miR-301a, and miR-301b) functions as an oncomiR in bladder cancer. The pharmacological inhibition of the miR-130 family molecules by the seed-targeting strategy with an 8-mer tiny locked nucleic acid (LNA) inhibits the growth, migration, and invasion of bladder cancer cells by repressing stress fiber formation. Here, we searched for a functionally advanced target sequence with LNA for the miR-130 family with low cytotoxicity and found LNA #9 (A(L)^i^i^A(L)^T(L)^T(L)^G(L)^5(L)^A(L)^5(L)^T(L)^G) as a candidate LNA.

View Article and Find Full Text PDF

The human AlkB homolog family (ALKBH) of proteins play a critical role in some types of cancer. However, the expression and function of the lysine demethylase ALKBH4 in cancer are poorly understood. Here, we examined the expression and function of ALKBH4 in non-small-cell lung cancer (NSCLC) and found that ALKBH4 was highly expressed in NSCLC, as compared to that in adjacent normal lung tissues.

View Article and Find Full Text PDF

There are more than 150 types of naturally occurring modified nucleosides, which are believed to be involved in various biological processes. Recently, an ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) technique has been developed to measure low levels of modified nucleosides. A comprehensive analysis of modified nucleosides will lead to a better understanding of intracellular ribonucleic acid modification, but this analysis requires high-sensitivity measurements.

View Article and Find Full Text PDF

Non‑small cell lung cancer (NSCLC) is one of the most common histologically defined subtypes of lung cancer. To identify a promising molecular target for NSCLC therapy, we performed gene expression analysis at the exon level using postoperative specimens of NSCLC patients. Exon array and real‑time PCR analyses revealed that an alternative splicing variant of solute carrier organic anion transporter family member 1B3 (SLCO1B3) called cancer type‑SLCO1B3 (Ct‑SLCO1B3) was significantly upregulated in the NSCLC samples.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is the most frequent cause of cancer-related death worldwide. Although many molecular-targeted drugs for NSCLC have been developed in recent years, the 5-year survival rate of patients with NSCLC remains low. Therefore, an improved understanding of the molecular mechanisms underlying the biology of NSCLC is essential for developing novel therapeutic strategies for the treatment of NSCLC.

View Article and Find Full Text PDF

Novel potent prostate cancer antigen-1 (PCA-1)/alpha-ketoglutarate-dependent dioxygenase alkB homolog 3 (ALKBH3) inhibitors both in vivo and in vivo were designed and evaluated by a stability assay in an S9 mixture, a mixture of rat liver homogenate and co-factors, and oral absorbability assay in rat, as well as enzyme and cell assays, and resulted in the synthesis of a novel potent PCA-1/ALKBH3 inhibitor in vivo. Among them, compound 7l exhibited potent inhibitory activities in a xenograft model bearing DU145 tumor at 10 mg/kg by subcutaneous administration without negative side-effects. This inhibitory activity in vivo was more potent than that of HUHS015 at 32 mg/kg, a known PCA-1/ALKBH3 inhibitor, or docetaxel at 2.

View Article and Find Full Text PDF

There are no blood biomarkers for the diagnosis of renal cell carcinoma (RCC) in routine clinical use. We focused on the gene expression profile of peripheral blood cells obtained from RCC patients to discover novel biomarkers for RCC diagnosis. Using microarray analysis and quantitative verification, CXCL7 was shown to be significantly upregulated in the peripheral blood cells of RCC patients.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney, and clear cell RCC (ccRCC) represents its most common histological subtype. Although several studies have reported high expression of miR-122 in ccRCC, its physiological role remains unclear. To clarify the role of miR-122 in ccRCC, we compared miR-122 expression levels in non-cancerous tissue and ccRCC.

View Article and Find Full Text PDF

Human AlkB homolog 3 (ALKBH3) is overexpressed in non-small cell lung cancers (NSCLC) and its high expression is significantly correlated with poor prognosis. While ALKBH3 knockdown induces apoptosis in NSCLC cells, the underlying anti-apoptotic mechanisms of ALKBH3 in NSCLC cells remain unclear. Here we show that ALKBH3 knockdown induces cell cycle arrest or apoptosis depending on the TP53 gene status in NSCLC cells.

View Article and Find Full Text PDF

The mammalian AlkB homolog (ALKBH) family of proteins possess a 2-oxoglutarate- and Fe(II)-dependent oxygenase domain. A similar domain in the Escherichia coli AlkB protein catalyzes the oxidative demethylation of 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) in both DNA and RNA. AlkB homolog 3 (ALKBH3) was also shown to demethylate 1-meA and 3-meC (induced in single-stranded DNA and RNA by a methylating agent) to reverse the methylation damage and retain the integrity of the DNA/RNA.

View Article and Find Full Text PDF

Human AlkB homolog 8 (ALKBH8) is highly expressed in high-grade, superficially and deeply invasive bladder cancer. Moreover, ALKBH8 knockdown induces apoptosis in bladder cancer cells. However, the underlying anti-apoptotic mechanism of ALKBH8 in bladder cancer cells has thus far remained unclear.

View Article and Find Full Text PDF

Human AlkB homolog 3 (ALKBH3), a homolog of the protein AlkB, demethylates 1-methyladenine and 3-methylcytosine (3-meC) in single-stranded DNA and RNA by oxidative demethylation. Immunohistochemical analyses on clinical cancer specimens and knockdown experiments using RNA interference and indicate that ALKBH3 is a promising molecular target for the treatment of prostate, pancreatic, and non-small cell lung cancer. Therefore, an inhibitor for ALKBH3 demethylase is expected to be a first-in-class molecular-targeted drug for cancer treatment.

View Article and Find Full Text PDF

Bladder cancer causes an estimated 150,000 deaths per year worldwide. Although 15% of the recurrent bladder cancer becomes an invasive type, currently used targeted therapy for malignant bladder cancer is still not efficient. We focused on the miR-130 family (miR-130b, miR-301a, and miR-301b) that was significantly upregulated in bladder cancer specimens than that of the normal urothelial specimens.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are noncoding RNAs that regulate gene expression and function in tumor development and progression. We previously identified up-regulated miRNAs in clear cell renal cell carcinoma (ccRCC) compared to matched-pair normal kidney by microarray. Here, we identify miRNAs that are up-regulated in ccRCC and are also correlated with survival and/or recurrence.

View Article and Find Full Text PDF

Unlabelled: Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney, and clear cell RCC (ccRCC) represents its most common histological subtype. To identify a therapeutic target for ccRCC, miRNA expression signatures from ccRCC clinical specimens were analyzed. miRNA microarray and real-time PCR analyses revealed that miR-629 expression was significantly upregulated in human ccRCC compared with adjacent noncancerous renal tissue.

View Article and Find Full Text PDF

Unlabelled: Clear cell renal cell carcinoma (ccRCC) is the most common histologically defined subtype of renal cell carcinoma (RCC). To define the molecular mechanism in the progression of ccRCC, we focused on LOX-like protein 2 (LOXL2), which is critical for the first step in collagen and elastin cross-linking. Using exon array analysis and quantitative validation, LOXL2 was shown to be significantly upregulated in clinical specimens of human ccRCC tumor tissues, compared with adjacent noncancerous renal tissues, and this elevated expression correlated with the pathologic stages of ccRCC.

View Article and Find Full Text PDF

AlkB is an Escherichia coli protein that catalyses the oxidative demethylation of 1-methyladenine and 3-methylcytosine in DNA and RNA. The enzyme activity of AlkB is dependent on a 2-oxoglutarate- and Fe(II)-dependent (2OG-Fe[II]) oxygenase domain. Human AlkB homologues (hABH), hABH1, hABH2 and hABH3, which also possess the 2OG-Fe(II) oxygenase domain, have previously been identified.

View Article and Find Full Text PDF