Publications by authors named "Kao-Hsiang Liu"

This study explores the fundamental, molecular- to microscopic-level behavior of methane gas confined into nanoporous silica proxies with different pore diameters and surface-to-volume (S/V) ratios. Surfaces and pore walls of nanoporous silica matrices are decorated with hydroxyl (-OH) groups, resembling natural heterogeneity. High-pressure MAS NMR was utilized to characterize the interactions between methane and the engineered nanoporous silica proxies under various temperature and pressure regimes.

View Article and Find Full Text PDF

We investigate dynamics of water (HO) and methanol (CHOH and CHOD) inside mesoporous silica materials with pore diameters of 4.0, 2.5, and 1.

View Article and Find Full Text PDF

Water's behavior near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. By monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure.

View Article and Find Full Text PDF

We performed a THz absorption spectroscopy study on liquid water confined in mesoporous silica materials, MCM-41-S-18 and MCM-41-S-21, of two different pore sizes at room temperatures. We found that stronger confinement with a smaller pore size causes reduced THz absorption, indicating reduced water mobility due to confinement. Combined with recent theoretical studies showing that the microscopic structure of water inside the nanopores can be separated into a core water region and an interfacial water region, our spectroscopy analysis further reveals a bulk-water-like THz absorption behavior in the core water region and a solid-like THz absorption behavior in the interfacial water region.

View Article and Find Full Text PDF

The average density of D2O confined in a nanoporous silica matrix (MCM-41-S) is studied with neutron scattering. We find that below ~210 K, the pressure-temperature plane of the system can be divided into two regions. The average density of the confined D2O in the higher-pressure region is about 16% larger than that in the lower-pressure region.

View Article and Find Full Text PDF

The boson peak in deeply cooled water confined in nanopores is studied with inelastic neutron scattering. We show that in the (P, T) plane, the locus of the emergence of the boson peak is nearly parallel to the Widom line below ∼ 1600 bar. Above 1600 bar, the situation is different and from this difference the end pressure of the Widom line is estimated.

View Article and Find Full Text PDF

A synchrotron X-ray diffraction method was used to measure the average density of water (H2O) confined in mesoporous silica materials MCM-41-S-15 and MCM-41-S-24. The average density versus temperature at atmospheric pressure of deeply cooled water is obtained by monitoring the intensity change of the MCM-41-S Bragg peaks, which is directly related to the scattering length density contrast between the silica matrix and the confined water. Within MCM-41-S-15, the pore size is small enough to prevent the crystallization at least down to 130 K.

View Article and Find Full Text PDF

Using neutron diffraction, we have tracked the temperature dependence of structural properties for heavy water confined in the nanoporous silica matrix MCM-41-S. By observing the correlation peak corresponding to the pore-pore distance, which is determined by the scattering contrast between the silica and the water, we monitored the density of the confined water. Concurrently, we studied the prominent first diffraction peak of D(2)O at ≈ 1.

View Article and Find Full Text PDF

A neutron scattering technique was developed to measure the density of heavy water confined in a nanoporous silica matrix in a temperature-pressure range, from 300 to 130 K and from 1 to 2,900 bars, where bulk water will crystalize. We observed a prominent hysteresis phenomenon in the measured density profiles between warming and cooling scans above 1,000 bars. We interpret this hysteresis phenomenon as support (although not a proof) of the hypothetical existence of a first-order liquid-liquid phase transition of water that would exist in the macroscopic system if crystallization could be avoided in the relevant phase region.

View Article and Find Full Text PDF

Quasielastic neutron scattering was used to study the dynamics of three-dimensional confined water in a hydrophobic mesoporous material designated as CMK-1 in the temperature range from 250 to 170 K. We observe a crossover phenomenon at temperature T(L) . We find that T(L) of water confined in CMK-1 occurs in between previous observations of one-dimensional confined water in materials with different hydrophilicities.

View Article and Find Full Text PDF

The single particle dynamics of water confined in a hydrophobically modified MCM-41-S sample has been studied using three high resolution quasielastic neutron scattering spectrometers in the temperature range from 300 to 210 K. A careful modeling of the dynamics allowed us to obtain good agreement among the results obtained with the three instruments, which have very different energy resolutions. The picture arising from the data is that, because of the heterogenous environment experienced by the water molecules, the dynamics show a broad distribution of relaxation times.

View Article and Find Full Text PDF

The surface effect on the peculiar dynamic and thermodynamic properties of supercooled water, such as the density, has been puzzling the scientific community for years. Recently, using the small angle neutron scattering method, we were able to measure the density of H(2)O confined in the hydrophobic mesoporous material CMK-1-14 from room temperature down to the deeply supercooled temperature 130 K at ambient pressure. We found that the well-known density maximum of water is shifted 17 K lower and, more interestingly, that the previously observed density minimum in hydrophilic confinement disappears.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionp9130trnhu5khj747impr64b3jrvike7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once