Publications by authors named "Kanzler B"

The stability of cellular phenotypes in developing organisms depends on error-free transmission of epigenetic and genetic information during mitosis. Methylation of cytosine residues in genomic DNA is a key epigenetic mark that modulates gene expression and prevents genome instability. Here, we report on a genetic test of the relationship between DNA replication and methylation in the context of the developing vertebrate organism instead of cell lines.

View Article and Find Full Text PDF

Despite advances in four-factor (4F)-induced reprogramming (4FR) in vitro and in vivo, how 4FR interconnects with senescence remains largely under investigated. Here, using genetic and chemical approaches to manipulate senescent cells, we show that removal of p16 cells resulted in the 4FR of somatic cells into totipotent-like stem cells. These cells expressed markers of both pluripotency and the two-cell embryonic state, readily formed implantation-competent blastoids and, following morula aggregation, contributed to embryonic and extraembryonic lineages.

View Article and Find Full Text PDF

The numbers of thymic epithelial cells (TECs) and thymocytes steadily increase during embryogenesis. To examine this dynamic, we generated several TEC-specific transgenic mouse lines, which express fluorescent proteins in the nucleus, the cytosol and in the membranes under the control of the Foxn1 promoter. These tools enabled us to determine TEC numbers in tissue sections by confocal fluorescent microscopy, and in the intact organ by light-sheet microscopy.

View Article and Find Full Text PDF

Wnt/β-catenin signaling is required for embryonic stem cell (ESC) pluripotency by inducing mesodermal differentiation and inhibiting neuronal differentiation; however, how β-catenin counter-regulates these differentiation pathways is unknown. Here, we show that lysine 49 (K49) of β-catenin is trimethylated (β-catMe3) by Ezh2 or acetylated (β-catAc) by Cbp. Significantly, β-catMe3 acts as a transcriptional co-repressor of the neuronal differentiation genes sox1 and sox3, whereas β-catAc acts as a transcriptional co-activator of the key mesodermal differentiation gene t-brachyury (t-bra).

View Article and Find Full Text PDF

Establishment of totipotency after somatic cell nuclear transfer (NT) requires not only reprogramming of gene expression, but also conversion of the cell cycle from quiescence to the precisely timed sequence of embryonic cleavage. Inadequate adaptation of the somatic nucleus to the embryonic cell cycle regime may lay the foundation for NT embryo failure and their reported lower cell counts. We combined bright field and fluorescence imaging of histone H(2b)-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage.

View Article and Find Full Text PDF

Insulin-like growth factor I receptor (Igf1r) signaling controls proliferation, differentiation, growth, and cell survival in many tissues; and its deregulated activity is involved in tumorigenesis. Although important during fetal growth and postnatal life, a function for the Igf pathway during preimplantation development has not been described. We show that abrogating Igf1r signaling with specific inhibitors blocks trophectoderm formation and compromises embryo survival during murine blastocyst formation.

View Article and Find Full Text PDF

The thymus is essential for T-cell development. Here, we focus on the role of the transcription factor Foxn1 in the development and function of thymic epithelial cells (TECs) of the mouse. TECs are of endodermal origin; they initially express Foxn1 and give rise to orthotopic (thoracic) and additional (cervical) thymi.

View Article and Find Full Text PDF

Tissue inhibitors of metalloproteinases (TIMPs) are a family of closely related proteins that inhibit matrix metalloproteinases (MMPs). In the central nervous system (CNS), TIMPs 2, 3, and 4 are constitutively expressed at high levels, whereas TIMP1 can be induced by various stimuli. Here, we studied the effects of constitutive expression of TIMP1 in the CNS in transgenic mice.

View Article and Find Full Text PDF

The trophectoderm (TE) ofblastocysts, the first epithelium established in mammalian development, 1) plays signaling, supportive, and patterning functions during pre-implantation development, 2) ensures embryo implantation into the uterine wall, and 3) gives rise to extra-embryonic tissues essential for embryo patterning and growth after implantation. We show that mouse TE, itself permissive to lentiviral (LV) infection, represents a robust non-permeable physical barrier to the virus particles, thereby shielding the cells of the inner cell mass (ICM) from viral infection. This LV feature will allow modulations of gene expression in a lineage-specific manner, thus having significant applications in mouse functional genetics.

View Article and Find Full Text PDF

The giant cytosolic protease tripeptidyl peptidase II (TPPII) has been implicated in the regulation of proliferation and survival of malignant cells, particularly lymphoma cells. To address its functions in normal cellular and systemic physiology we have generated TPPII-deficient mice. TPPII deficiency activates cell type-specific death programs, including proliferative apoptosis in several T lineage subsets and premature cellular senescence in fibroblasts and CD8(+) T cells.

View Article and Find Full Text PDF

The trophectoderm (TE) of blastocysts, the first epithelium established in mammalian development, (1) plays signaling, supportive, and patterning functions during preimplantation development, (2) ensures embryo implantation into the uterine wall, and (3) gives rise to extraembryonic tissues essential for embryo patterning and growth after implantation. We show that mouse TE, itself permissive to lentiviral (LV) infection, represents a robust nonpermeable physical barrier to the virus particles, thereby shielding the cells of the inner cell mass from viral infection. This LV feature will allow modulations of gene expression in a lineage-specific manner, thus having significant applications in mouse functional genetics.

View Article and Find Full Text PDF

Endoplasmic reticulum-associated aminopeptidase 1 (ERAP1) is involved in the final processing of endogenous peptides presented by MHC class I molecules to CTLs. We generated ERAP1-deficient mice and analyzed cytotoxic responses upon infection with three viruses, including lymphocytic choriomeningitis virus, which causes vigorous T cell activation and is controlled by CTLs. Despite pronounced effects on the presentation of selected epitopes, the in vivo cytotoxic response was altered for only one of several epitopes tested.

View Article and Find Full Text PDF

During mammalian embryogenesis the trophectoderm represents the first epithelial structure formed. The cell adhesion molecule E-cadherin is ultimately necessary for the transition from compacted morula to the formation of the blastocyst to ensure correct establishment of adhesion junctions in the trophectoderm. Here, we analyzed to what extent E-cadherin confers unique adhesion and signaling properties in trophectoderm formation in vivo.

View Article and Find Full Text PDF

Vertebrate skeletogenesis involves two processes, skeletal patterning and osteoblast differentiation. Here, we show that Satb2, encoding a nuclear matrix protein, is expressed in branchial arches and in cells of the osteoblast lineage. Satb2-/- mice exhibit both craniofacial abnormalities that resemble those observed in humans carrying a translocation in SATB2 and defects in osteoblast differentiation and function.

View Article and Find Full Text PDF

SOX9 is an evolutionary conserved transcription factor that is expressed in a variety of tissues, with essential functions in cartilage, testis, heart, glial cell, inner ear and neural crest development. By comparing human and pufferfish genomic sequences, we previously identified eight highly conserved sequence elements between 290 kb 5' and 450 kb 3' to human SOX9. In this study, we assayed the regulatory potential of elements E1 to E7 in transgenic mice using a lacZ reporter gene driven by a 529 bp minimal mouse Sox9 promoter.

View Article and Find Full Text PDF

Phototrophic consortia represent valuable model systems for the study of signal transduction and coevolution between different bacteria. The phototrophic consortium "Chlorochromatium aggregatum" consists of a colorless central rod-shaped bacterium surrounded by about 20 green-pigmented epibionts. Although the epibiont was identified as a member of the green sulfur bacteria, and recently isolated and characterized in pure culture, the central colorless bacterium has been identified as a member of the beta-Proteobacteria but so far could not be characterized further.

View Article and Find Full Text PDF

The Hoxa2 transcription factor acts during development of the second branchial arch. As for most of the developmental processes controlled by Hox proteins, the mechanism by which Hoxa2 regulates the morphology of second branchial arch derivatives is unclear. We show that Six2, another transcription factor, is genetically downstream of Hoxa2.

View Article and Find Full Text PDF

Many components of the Wnt/beta-catenin signaling pathway are expressed during mouse pre-implantation embryo development, suggesting that this pathway may control cell proliferation and differentiation at this time. We find no evidence for a functional activity of this pathway in cleavage-stage embryos using the Wnt-reporter line, BAT-gal. To further probe the activity of this pathway, we activated beta-catenin signaling by mating a zona pellucida3-cre (Zp3-cre) transgenic mouse line with a mouse line containing an exon3-floxed beta-catenin allele.

View Article and Find Full Text PDF

We report that gene silencing via intracytoplasmic microinjections of morpholino-modified antisense oligonucleotides is an effective and reproducible method to study both maternal and zygotic gene functions during early and late stages of mouse preimplantation development. The zygotic expression of the beta-geo transgene in the ROSA26 mouse strain could be inhibited until at least the early blastula stages. Thus morpholino-triggered gene inactivation appears to be a useful method to study the functional role of genes in preimplantation development.

View Article and Find Full Text PDF

Hox genes are known key regulators of embryonic segmental identity, but little is known about the mechanisms of their action. To address this issue, we have analyzed how Hoxa2 specifies segmental identity in the second branchial arch. Using a subtraction approach, we found that Ptx1 was upregulated in the second arch mesenchyme of Hoxa2 mutants.

View Article and Find Full Text PDF

Gene-inactivation techniques in the mouse have become an essential tool for modern biomedical research. Both ubiquitous and tissue-specific inactivation are possible with current approaches, and recent developments facilitate a temporal control of the inactivation process. However, one of the limitations of current procedures is that inactivation is irreversible.

View Article and Find Full Text PDF

The vertebral column derives from somites generated by segmentation of presomitic mesoderm (PSM). Somitogenesis involves a molecular oscillator, the segmentation clock, controlling periodic Notch signaling in the PSM. Here, we establish a novel link between Wnt/beta-catenin signaling and the segmentation clock.

View Article and Find Full Text PDF

C57BL/10ScCr (Cr) mice carry a deletion of the Toll-like receptor 4 (tlr4) gene (i.e. they are tlr4(0/0)) and are thus refractory to LPS effects.

View Article and Find Full Text PDF