By using cell fractionation and measurement of Fe(III)heme-pyridine, the antimalarial chloroquine (CQ) has been shown to cause a dose-dependent decrease in hemozoin and concomitant increase in toxic free heme in cultured Plasmodium falciparum that is directly correlated with parasite survival. Transmission electron microscopy techniques have further shown that heme is redistributed from the parasite digestive vacuole to the cytoplasm and that CQ disrupts hemozoin crystal growth, resulting in mosaic boundaries in the crystals formed in the parasite. Extension of the cell fractionation study to other drugs has shown that artesunate, amodiaquine, lumefantrine, mefloquine, and quinine, all clinically important antimalarials, also inhibit hemozoin formation in the parasite cell, while the antifolate pyrimethamine and its combination with sulfadoxine do not.
View Article and Find Full Text PDF4-Aminoquinolines were hybridized with artemisinin and 1,4-naphthoquinone derivatives via the Ugi-four-component condensation reaction, and their biological activities investigated. The artemisinin-containing compounds 6a-c and its salt 6c-citrate were the most active target compounds in the antiplasmodial assays. However, despite the potent in vitro activities, they also displayed cytotoxicity against a mammalian cell-line, and had lower therapeutic indices than chloroquine.
View Article and Find Full Text PDFAnalogues of the previously reported antimalarial hybrid compounds 8b and 12 were proposed with the aim of identifying compounds with improved solubility and retained antimalarial potency. In silico characterization predicted improved solubilities of the analogues, particularly at low pH; they retained acceptable predicted permeability properties but were predicted to be susceptible to hepatic metabolism. These analogues were synthesized and found to exhibit notable in vitro antimalarial activity.
View Article and Find Full Text PDFInhibition of hemozoin biocrystallization is considered the main mechanism of action of 4-aminoquinoline antimalarials including chloroquine (CQ) but cannot fully explain the activity of ferroquine (FQ) which has been related to redox properties and intramolecular hydrogen bonding. Analogues of FQ, methylferroquine (Me-FQ), ruthenoquine (RQ), and methylruthenoquine (Me-RQ), were prepared. Combination of physicochemical and molecular modeling methods showed that FQ and RQ favor intramolecular hydrogen bonding between the 4-aminoquinoline NH group and the terminal amino group in the absence of water, suggesting that this structure may enhance its passage through the membrane.
View Article and Find Full Text PDFA targeted series of chalcone and dienone hybrid compounds containing aminoquinoline and nucleoside templates was synthesized and evaluated for in vitro antimalarial activity. The Cu(I)-catalyzed cycloaddition of azides and terminal alkynes was applied as the hybridization strategy. Several chalcone-chloroquinoline hybrid compounds were found to be notably active, with compound 8b the most active, exhibiting submicromolar IC(50) values against the D10, Dd2 and W2 strains of Plasmodium falciparum.
View Article and Find Full Text PDFThe mechanism of formation of haemozoin, a detoxification by-product of several blood-feeding organisms including malaria parasites, has been a subject of debate; however, recent studies suggest that neutral lipids may serve as a catalyst. In this study, a model system consisting of an emulsion of neutral lipid particles was employed to investigate the formation of beta-haematin, the synthetic counterpart of haemozoin, at the lipid-water interface. A solution of monoglyceride, either monostearoylglycerol (MSG) or monopalmitoylglycerol (MPG), dissolved in acetone and methanol was introduced to an aqueous surface.
View Article and Find Full Text PDFA novel series of 4-aminoquinoline-containing 2-imidazolines were synthesized via a one-pot 3-component condensation reaction of amine, aldehyde and isocyanoacetate. The products were obtained in high yield as well as purity and were evaluated directly against two strains of Plasmodium falciparum and Trypanosoma brucei. Compound was the most active across all parasites with ED(50) = 3.
View Article and Find Full Text PDFSeveral blood-feeding organisms, including the malaria parasite detoxify haem released from host haemoglobin by conversion to the insoluble crystalline ferriprotoporphyrin IX dimer known as haemozoin. To date the mechanism of haemozoin formation has remained unknown, although lipids or proteins have been suggested to catalyse its formation. We have found that beta-haematin (synthetic haemozoin) forms rapidly under physiologically realistic conditions near octanol/water, pentanol/water and lipid/water interfaces.
View Article and Find Full Text PDFThe strength of inhibition of beta-hematin (synthetic hemozoin or malaria pigment) formation by the quinoline antimalarial drugs chloroquine, amodiaquine, quinidine and quinine has been investigated as a function of incubation time. In the assay used, beta-hematin formation was brought about using 4.5M acetate, pH 4.
View Article and Find Full Text PDFAntimalarial drugs such as chloroquine are believed to act by inhibiting hemozoin formation in the food vacuole of the malaria parasite. We have developed a new assay for measuring and detecting inhibition of synthetic hemozoin (beta-hematin) formation. Aqueous pyridine (5% v/v, pH 7.
View Article and Find Full Text PDFEnthalpy-entropy compensation in the interaction of quinoline antimalarials with ferriprotoporphyrin IX (Fe(III)PPIX) in 40% aqueous dimethyl sulfoxide (DMSO) has been compared with that in pure aqueous solution. The data indicate that the degree of desolvation and loss of conformational freedom is virtually identical in both systems. Taken together with previous findings showing that the molar free energies of association of these drugs with Fe(III)PPIX in both solvent systems are very similar, this suggests that the recognition site on the metalloporphyrin is comparable in both cases.
View Article and Find Full Text PDF