We conducted a clinical veterinary study on neutron capture therapy (NCT) at a neutron-producing accelerator with seven incurable pets with spontaneous tumors and gadolinium as a neutron capture agent (gadolinium neutron capture therapy, or GdNCT). Gadolinium-containing dimeglumine gadopentetate, or Gd-DTPA (Magnevist, 0.6 mL/kg b.
View Article and Find Full Text PDFSufficient boron-10 isotope (B) accumulation by tumor cells is one of the main requirements for successful boron neutron capture therapy (BNCT). The inability of the clinically registered B-containing borophenylalanine (BPA) to maintain a high boron tumor concentration during neutron irradiation after a single injection has been partially solved by its continuous infusion; however, its lack of persistence has driven the development of new compounds that overcome the imperfections of BPA. We propose using elemental boron nanoparticles (eBNPs) synthesized by cascade ultrasonic dispersion and destruction of elemental boron microparticles and stabilized with hydroxyethylcellulose (HEC) as a core component of a novel boron drug for BNCT.
View Article and Find Full Text PDF(1) Background: accelerator-based neutron sources are a new frontier for BNCT but many technical issues remain. We aimed to study such issues and results in larger-animal BNCT (cats and dogs) with naturally occurring, malignant tumors in different locations as an intermediate step in translating current research into clinical practice. (2) Methods: 10 pet cats and dogs with incurable, malignant tumors that had no treatment alternatives were included in this study.
View Article and Find Full Text PDFBoron neutron capture therapy (BNCT) can become an instrument for patients with malignant neoplasms of the rectum and colon. Here we evaluate the effectiveness of BNCT performed at the accelerator based epithermal neutron source at G. I.
View Article and Find Full Text PDF(1) Background: Developments in accelerator-based neutron sources moved boron neutron capture therapy (BNCT) to the next phase, where new neutron radiation parameters had to be studied for the treatment of cancers, including brain tumors. We aimed to further improve accelerator-BNCT efficacy by optimizing dosimetry control, beam parameters, and combinations of boronophenylalanine (BPA) and sodium borocaptate (BSH) administration in U87MG xenograft-bearing immunodeficient mice with two different tumor locations. (2) Methods: The study included two sets of experiments.
View Article and Find Full Text PDFBoron neutron capture therapy (BNCT) is an anticancer modality realized through B accumulation in tumor cells, neutron irradiation of the tumor, and decay of boron atoms with the release of alpha-particles and lithium nuclei that damage tumor cell DNA. As high-LET particle release takes place inside tumor cells absorbed dose calculations are difficult, since no essential extracellular energy is emitted. We placed gold nanoparticles inside tumor cells saturated with boron to more accurately measure the absorbed dose.
View Article and Find Full Text PDFBoron neutron capture therapy (BNCT), a binary cancer therapeutic modality, has moved to a new phase since development of accelerator-based neutron sources and establishment of BNCT centers in Finland and Japan. That stimulated efforts for better boron delivery agent development. As liposomes have shown effective boron delivery properties and sufficient tumor retention, fluorescent liposome labelling may serve as a rapid method to study initial ability of newly synthesized liposomes to be captured by tumor cells prior to experiments on boron accumulation and neutron irradiation.
View Article and Find Full Text PDFTo evaluate the efficacy of boron neutron capture therapy (BNCT) for a heterotopic U87 glioblastoma model in SCID mice using boron phenylalanine (BPA), sodium borocaptate (BSH) and liposomal BSH as boron compounds at a unique, accelerator-based neutron source. Glioblastoma models were obtained by subcutaneous implantation of U87 cells in the right thighs of SCID mice before administration of 350 mg/kg of BPA (BPA-group), 100 mg/kg of BSH (BSH-group) or 100 mg/kg of BSH in PEGylated liposomes (liposomal BSH-group) into the retroorbital sinus. Liposomes were prepared by reverse-phase evaporation.
View Article and Find Full Text PDFIn the current article, we provide in vitro efficacy evaluation of a unique accelerator-based neutron source, constructed at the Budker Institute of Nuclear Physics (Novosibirsk, Russian Federation), for boron neutron capture therapy (BNCT), which is particularly effective in the case of invasive cancers. U251MG, CHO-K1 and V79 cells were incubated and irradiated in various concentrations of boric acid with epithermal neutrons for 2-3 h in a plexiglass phantom, using 2.0 MeV proton energy and 1.
View Article and Find Full Text PDFVestn Rentgenol Radiol
April 2016
Boron neutron capture therapy (BNCT) that is of the highest attractiveness due to its selective action directly on malignant tumor cells is a promising approach to treating cancers. Clinical interest in BNCT focuses in neuro-oncology on therapy for gliomas, glioblastoma in particular, and BNCT may be used in brain metastatic involvement. This needs an epithermal neutron source that complies with the requirements for BNCT, as well as a 10B-containing agent that will selectively accumulate in tumor tissue.
View Article and Find Full Text PDFAt the BINP, a pilot accelerator based epithermal neutron source is now in use. Most recent investigations on the facility are related with studying the dark current, X-ray radiation measuring, optimization of H(-)-beam injection and new gas stripping target calibrating. The results of these studies, ways of providing stability to the accelerator are presented and discussed, as well as the ways of creating the therapeutic beam and strategies of applying the facility for clinical use.
View Article and Find Full Text PDFInnovative facility for neutron capture therapy has been built at BINP. This facility is based on compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.
View Article and Find Full Text PDFZh Vopr Neirokhir Im N N Burdenko
February 2007
A retrospective cohort analysis of the results of treatment of patients with malignant gliomas was made in 2 groups, each comprising 43 patients. In Group 1, the tumors were radically removed under neuronavigation guidance ("Voyager SX"). In Group 2 where the patients were operated on by the same team of surgeons who did not employ computer-assisted navigation technologies.
View Article and Find Full Text PDF