FcγRIIa amplifies platelet activation and higher platelet FcγRIIa identifies patients at greater risk of subsequent cardiovascular events. We report the accuracy and precision of a modified test to quantify FcγRIIa on previously fixed platelets (pFCG test). An antibody clone (5G1) was developed after exposure of mice to formaldehyde treated FcγRIIa.
View Article and Find Full Text PDFEnzymes are able to maintain remarkably high selectivity toward their substrates while still retaining high catalytic rates. By immobilizing enzymes onto surfaces we can heterogenize these biological catalysts, making it practical to study, use, and combine them in an easily controlled system. In this work, we developed a platform that allows for the simple and oriented immobilization of proteins through DNA-directed immobilization.
View Article and Find Full Text PDFSite-selective bioconjugation methods are valuable because of their ability to confer new properties to proteins by the chemical attachment of specific functional groups. Well-defined bioconjugates obtained through these methods have found utility for the study of protein function and the creation of protein-based materials. We have previously reported a protein modification strategy to modify the N-terminus of peptides and proteins using N-methylpyridinium-4-carboxaldehyde benzenesulfonate (Rapoport's salt, RS) as a transamination reagent, which oxidizes the N-terminal amino group to provide a uniquely reactive aldehyde or ketone.
View Article and Find Full Text PDFThe controlled attachment of synthetic groups to proteins is important for a number of fields, including therapeutics, where antibody-drug conjugates are an emerging area of biologic medicines. We have previously reported a site-specific protein modification method using a transamination reaction that chemoselectively oxidizes the N-terminal amine of a polypeptide chain to a ketone or an aldehyde group. The newly introduced carbonyl can be used for conjugation to a synthetic group in one location through the formation of an oxime or a hydrazone linkage.
View Article and Find Full Text PDFPeptoids, oligomers of N-substituted glycine, have been valuable targets for study and diverse application as peptidomimetics and as nanomaterials. Their conformational heterogeneity has made the study of peptoid structures using high-resolution analyses challenging, limiting our understanding of the physiochemical features that mediate peptoid folding. Here, we introduce a new method for the study of peptoid structure that relies on the environmentally sensitive fluorescence properties of 4-N,N-dimethylamino-1,8-naphthalimide (4-DMN).
View Article and Find Full Text PDF