Publications by authors named "Kanury V Rao"

Article Synopsis
  • Researchers studied how mycobacterium tuberculosis (Mtb) infects human THP1 cells over time by using two lab strains and two clinical strains.
  • They measured host responses at four time points: 6, 18, 30, and 42 hours post-infection, comparing infected cells to uninfected controls.
  • The study utilized SWATH-MS technology for proteome analysis, with the resulting data available in the PRIDE repository under dataset identifier PXD022352.
View Article and Find Full Text PDF

Akt1 is a multi-functional protein implicated in key cellular processes including regulation of proliferation, survival, metabolism and protein synthesis. Its functional diversity results through interactions with other proteins which change with changing context. This study was designed to capture proteins, which interact with Akt1 as the cell cycle progresses from G0 to G1S and then G2 phase.

View Article and Find Full Text PDF

Here we provide data for SILAC and iTRAQ based hyperplexing combined with BONCAT based click chemistry for selective enrichment of newly synthesized proteins secreted by THP1 macrophages at various time points after infection with four different strains of Mycobacterium tuberculosis. The macrophages were infected with H37Ra, H37Rv, BND433 and JAL2287 strains of M. tuberculosis.

View Article and Find Full Text PDF

Survival of Mycobacterium tuberculosis (Mtb) within the host macrophage is mediated through pathogen-dependent inhibition of phagosome-lysosome fusion, which enables bacteria to persist within the immature phagosomal compartment. By employing ultrastructural examination of different field isolates supported by biochemical analysis, we found that some of the Mtb strains were in fact poorly adapted for subsistence within endocytic vesicles of infected macrophages. Instead, through a mechanism involving activation of host cytosolic phospholipase A2, these bacteria rapidly escaped from phagosomes, and established residence in the cytoplasm of the host cell.

View Article and Find Full Text PDF

The 60 kDa heat shock proteins, also known as Cpn60s (GroELs) are components of the essential protein folding machinery of the cell, but are also dominant antigens in many infectious diseases. Although generally essential for cellular survival, in some organisms such as Mycobacterium tuberculosis, one or more paralogous Cpn60s are known to be dispensable. In M.

View Article and Find Full Text PDF

Decreased expression of CD3-ζ chain, an adaptor protein associated with T-cell signalling, is well documented in patients with oral cancer, but the mechanistic justifications are fragmentary. Previous studies in patients with oral cancer have shown that decreased expression of CD3-ζ chain was associated with decreased responsiveness of T cells. Tumours are known to induce localized as well as systemic immune suppression.

View Article and Find Full Text PDF

Infection of humans with Mycobacterium tuberculosis (Mtb) results in diverse outcomes that range from acute disease to establishment of persistence and to even clearance of the pathogen. These different outcomes represent the combined result of host heterogeneity on the one hand, and virulence properties of the infecting strain of pathogen on the other. From the standpoint of the host, the balance between PGE2, LXA4 and LTB4 represents at least one of the factors that dictates the eventual pathophysiology.

View Article and Find Full Text PDF

Upon infection, Mycobacterium tuberculosis (Mtb) deploys specialized secretion machinery to deliver virulent proteins with the capacity to modulate a variety of host-cellular pathways. Studies on the identification of intra-macrophage Mtb proteins, however, are constricted by an inability to selectively enrich these virulent effectors against overwhelming protein content of the host. Here, we introduce an Mtb-selective protein labeling method based on genetic incorporation of azidonorleucine (Anl) through the expression of a mutant methionyl-tRNA synthetase.

View Article and Find Full Text PDF

The Foamy Macrophage (FM) differentiation forms a major component of the host dependent survival axis of M. tuberculosis. The FM which are characterized by the intracellular accumulation of lipid bodies (LBs), ensure a privileged existence for the bacilli through ready provision of nutrients and by conferring protection against bactericidal pathways.

View Article and Find Full Text PDF

Unsatisfactory performance of the existing BCG vaccines, especially against the adult pulmonary disease, has urged the need for an effective vaccine against tuberculosis (TB). In this study, we employed differential proteomics to obtain a list of antigens as potential vaccine candidates. Bacterial epitopes being presented at early stages on MHC class I and class II molecules of macrophages infected with Mycobacterium tuberculosis (M.

View Article and Find Full Text PDF

Obesity is a metabolic state associated with excess of positive energy balance. While adipose tissues are considered the major contributor for complications associated with obesity, they influence a variety of tissues and inflict significant metabolic and inflammatory alterations. Unfortunately, the communication network between different cell-types responsible for such systemic alterations has been largely unexplored.

View Article and Find Full Text PDF

Despite extensive studies on the interactions between Mycobacterium tuberculosis (M.tb) and macrophages, the mechanism by which pathogen evades anti-microbial responses and establishes persistence within the host cell remains unknown. In this study, we developed a four-dimensional ODE model to describe the dynamics of host-pathogen interactions in the early phase of macrophage infection.

View Article and Find Full Text PDF

Background: Obesity is now a worldwide epidemic disease and poses a major risk for diet related diseases like type 2 diabetes, cardiovascular disease, stroke and fatty liver among others. In the present study we employed the murine model of diet-induced obesity to determine the early, tissue-specific, gene expression signatures that characterized progression to obesity and type 2 diabetes.

Results: We used the C57BL/6 J mouse which is known as a counterpart for diet-induced human diabetes and obesity model.

View Article and Find Full Text PDF

The success of Mycobacterium tuberculosis as a pathogen derives from its facile adaptation to the intracellular milieu of human macrophages. To explore this process, we asked whether adaptation also required interference with the metabolic machinery of the host cell. Temporal profiling of the metabolic flux, in cells infected with differently virulent mycobacterial strains, confirmed that this was indeed the case.

View Article and Find Full Text PDF

Kal-1 is a polyherbal decoction of seven different natural ingredients, traditionally used in controlling sugar levels, inflammatory conditions particularly regulating metabolic and immunoinflammatory balance which are the major factors involved in obesity and related diseases. In the present study, we aimed to investigate the effect of Kal-1 (an abbreviation derived from the procuring source) on diet-induced obesity and type II diabetes using C57BL/6J mice as a model. The present study was performed with two experimental groups involving obese and prediabetic mice as study animals.

View Article and Find Full Text PDF

Activation of the antigen receptors on the surface of B cells in response to their cognate ligands is tightly controlled by feedback mechanisms. Apart from ligand induced signaling, B cell receptors (BCRs) emanate ligand independent tonic signaling crucial for B cell survival and development. In the absence of a ligand, BCR tonic signaling is controlled by the basal activity of the Src family protein tyrosine kinase Lyn and the protein tyrosine phosphatase SHP.

View Article and Find Full Text PDF

To probe how the pathogen Mycobacterium tuberculosis controls host cellular death pathways, we compared mitochondrial responses in human macrophages infected either with the avirulent mycobacterial strain H37Ra, or its virulent counterpart H37Rv. Following H37Ra infection, induction of the apoptotic response was foreshadowed by the early suppression of stress-induced mitochondrial activity. In contrast, mitochondria in H37Rv-infected cells displayed robust activity with increased membrane potential and ATP synthesis.

View Article and Find Full Text PDF

The differentiation of human primary T helper 1 (Th1) cells from naïve precursor cells is regulated by a complex, interrelated signaling network. The identification of factors regulating the early steps of Th1 cell polarization can provide important insight in the development of therapeutics for many inflammatory and autoimmune diseases. The serine/threonine-specific proviral integration site for Moloney murine leukemia virus (PIM) kinases PIM1 and PIM2 have been implicated in the cytokine-dependent proliferation and survival of lymphocytes.

View Article and Find Full Text PDF

Upon infection, Mycobacterium tuberculosis (Mtb) metabolically alters the macrophage to create a niche that is ideally suited to its persistent lifestyle. Infected macrophages acquire a "foamy" phenotype characterized by the accumulation of lipid bodies (LBs), which serve as both a source of nutrients and a secure niche for the bacterium. While the functional significance of the foamy phenotype is appreciated, the biochemical pathways mediating this process are understudied.

View Article and Find Full Text PDF

Molecular mechanism governing biological processes leading to dietary obesity and diabetes are largely unknown. Here we study the liver proteome differentially expressed in a long-term high-fat and high-sucrose diet (HFHSD)-induced obesity and diabetes mouse model. Changes in mouse liver proteins were identified using iTRAQ, offline 2D LC (SCX and RP) and MALDI-TOF/TOF MS.

View Article and Find Full Text PDF

In this study we show that IL-4 is crucial during reinforcement window of human Th2 differentiation for optimal Th2 development. We have also shown here that during this stage, IL-4 helps in cellular decision-making process of differentiation versus proliferation. We have combined computational and experimental methods to analyze Th2 transcription network to name novel players of the process of Th2 differentiation.

View Article and Find Full Text PDF

We demonstrate that the mitogen-activated protein kinases extracellular signal-regulated kinase (ERK)-1 and ERK-2 have a central role in mediating T-cell receptor-dependent induction of IL4 expression in human CD4(+) T cells. Significantly, this involved a novel mechanism wherein receptor cross-linking induced activated ERK to physically associate with a promoter element on the IL4 gene. The proximally localized ERK then facilitated recruitment of the key transcription factors necessary for initiating IL4 gene transcription.

View Article and Find Full Text PDF

Drug development efforts against cancer are often hampered by the complex properties of signaling networks. Here we combined the results of an RNAi screen targeting the cellular signaling machinery, with graph theoretical analysis to extract the core modules that process both mitogenic and oncogenic signals to drive cell cycle progression. These modules encapsulated mechanisms for coordinating seamless transition of cells through the individual cell cycle stages and, importantly, were functionally conserved across different cancer cell types.

View Article and Find Full Text PDF

Development of noninvasive methods for tuberculosis (TB) diagnosis, with the potential to be administered in field situations, remains as an unmet challenge. A wide array of molecules are present in urine and reflect the pathophysiological condition of a subject. With infection, an alteration in the molecular constituents is anticipated, characterization of which may form a basis for TB diagnosis.

View Article and Find Full Text PDF

Coordinated coupling of biochemical reactions involving protein phosphorylation and dephosphorylation represents the hallmark of the intracellular signal transduction machinery. Distinct classes of enzymes known as kinases and phosphatases respectively drive these reactions. Alterations in activity of such signaling intermediates, either due to mutations in the corresponding genes or epigenetic modulation of their expression levels, is often the cause of many cancers.

View Article and Find Full Text PDF