ACS Appl Mater Interfaces
November 2024
The development of novel subnanometer clusters (SNCs) catalysts with superior catalytic performance depends on the precise control of clusters' atomistic sizes, shapes, and accurate deposition onto surfaces. The intrinsic complexity of the adsorption process complicates the ability to achieve an atomistic understanding of the most relevant structure-reactivity relationships hampering the rational design of novel catalytic materials. In most cases, existing computational approaches rely on just a few structures to draw conclusions on clusters' reactivity thereby neglecting the complexity of the existing energy landscapes thus leading to insufficient sampling and, most likely, unreliable predictions.
View Article and Find Full Text PDFFunctionalized porphyrins by introducing exotic atoms into their central cavities have significant applications across various fields. As unique nanographenes, porphyrins functionalized with monoboron are intriguing, yet their synthesis remains highly challenging. Herein, we present the first on-surface boronation of porphyrin, bonding a single boron atom into the porphyrin's cavity.
View Article and Find Full Text PDFDesorption of molecules from surfaces is widespread both in nature and technology. Despite its omnipresence and conceptual simplicity, fundamental details can be surprisingly complex and are often poorly understood. In many cases, first-order kinetics is assumed, which implies that the adsorbates do not interact with each other and desorption is the rate-limiting process.
View Article and Find Full Text PDFAs an efficient molecular engineering approach, on-surface synthesis (OSS) defines a special opportunity to investigate intermolecular coupling at the sub-molecular level and has delivered many appealing polymers. So far, all OSS is based on the lateral covalent bonding of molecular precursors within a single molecular layer; extending OSS from two to three dimensions is yet to be realized. Herein, we address this challenge by cycloaddition between C and an aromatic compound.
View Article and Find Full Text PDFSingle-atom catalysis of carbon monoxide oxidation on metal-oxide surfaces is crucial for greenhouse recycling, automotive catalysis, and beyond, but reports of the atomic-scale mechanism are still scarce. Here, using scanning probe microscopy, we show that charging single gold atoms on oxidized rutile titanium dioxide surface, both positively and negatively, considerably promotes adsorption of carbon monoxide. No carbon monoxide adsorption is observed on neutral gold atoms.
View Article and Find Full Text PDFA widely accepted theory is that life originated from the hydrothermal environment in the primordial ocean. Nevertheless, the low desorption temperature from inorganic substrates and the fragileness of hydrogen-bonded nucleobases do not support the required thermal stability in such an environment. Herein, we report the super-robust complexes of xanthine, one of the precursors for the primitive nucleic acids, with Na.
View Article and Find Full Text PDFMotivated by the quest for experimental procedures capable of controlled manipulation of single atoms on surfaces, we set up a computational strategy that explores the cyclical vertical manipulation of a broad set of single atoms on the GaAs(110) surface. First-principles simulations of atomic force microscope tip-sample interactions were performed considering families of GaAs and Au-terminated tip apexes with varying crystalline termination. We identified a subset of tips capable of both picking up and depositing an adatom (Ga, As, Al, and Au) any number of times via a modify-restore cycle that "resets" the apex of the scanning probe to its original structure at the end of each cycle.
View Article and Find Full Text PDFMolecular surgery provides the opportunity to study relatively large molecules encapsulated within a fullerene cage. Here we determine the location of an HO molecule isolated within an adsorbed buckminsterfullerene cage, and compare this to the intrafullerene position of HF. Using normal incidence X-ray standing wave (NIXSW) analysis, coupled with density functional theory and molecular dynamics simulations, we show that both HO and HF are located at an off-centre position within the fullerene cage, caused by substantial intra-cage electrostatic fields generated by surface adsorption of the fullerene.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2021
Transition-metal carbides have sparked unprecedented enthusiasm as high-performance catalysts in recent years. Still, the catalytic properties of copper carbide remain unexplored. By introducing subsurface carbon to Cu(111), a displacement reaction of a proton in a carboxyl acid group with a single Cu atom is demonstrated at the atomic scale and room temperature.
View Article and Find Full Text PDFOn-surface synthesis (OSS) involving relatively high energy barriers remains challenging due to a typical dilemma: firm molecular anchor is required to prevent molecular desorption upon the reaction, whereas sufficient lateral mobility is crucial for subsequent coupling and assembly. By locking the molecular precursors on the substrate then unlocking them during the reaction, we present a strategy to address this challenge. High-yield synthesis based on well-defined decarboxylation, intermediate transition, and hexamerization is demonstrated, resulting in an extended and ordered network exclusively composed of the newly synthesized macrocyclic compound.
View Article and Find Full Text PDFThe stochastic Liouville-von Neumann (SLN) equation describes the dynamics of an open quantum system reduced density matrix coupled to a non-Markovian harmonic environment. The interaction with the environment is represented by complex colored noises which drive the system, and whose correlation functions are set by the properties of the environment. We present a number of schemes capable of generating colored noises of this kind that are built on a noise amplitude reduction procedure [Imai et al.
View Article and Find Full Text PDFChemical reactions that convert sp to sp hybridization have been demonstrated to be a fascinating yet challenging route to functionalize graphene. So far it has not been possible to precisely control the reaction sites nor their lateral order at the atomic/molecular scale. The application prospects have been limited for reactions that require long soaking, heating, electric pulses or probe-tip press.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2020
Developing graphene-like two-dimensional materials naturally possessing a band gap has sparked enormous interest. Thanks to the inherent wide band gap and high mobility in the 2D plane, covalent organic frameworks containing triazine rings (t-COFs) hold great promise in this regard, whilst the synthesis of single-layer t-COFs remains highly challenging. Herein, we present the fabrication of a well-defined graphene-like t-COF on Au(111).
View Article and Find Full Text PDFRecent advances in scanning probe microscopy on surface enable not only direct observation of molecular structures but also local probe reactions, in which unstable short-lived products have been synthesized and analyzed. Now, an endergonic reaction to synthesize a single Sondheimer-Wong diyne from 6,13-dibromopentaleno[1,2-b:4,5-b']dinaphthalene by local probe chemistry on a ultra-thin film of NaCl formed on a Cu(111) surface at 4.3 K is presented.
View Article and Find Full Text PDFThe long time dynamics of molecular ratchets on a 1D periodic potential energy surface (PES) subjected to an external stimulus is studied using the rate equation method. The PES consisting of repeated waveforms made of two peaks is considered as an example of a spatially symmetric or asymmetric PES. This PES may, for example, correspond to diffusion of a bipedal molecule that moves along an atomic track via an inchworm walk mechanism [Raval et al.
View Article and Find Full Text PDFMolecular walkers standing on two or more "feet" on an anisotropic periodic potential of a crystal surface may perform a one-dimensional Brownian motion at the surface-vacuum interface along a particular direction in which their mobility is the largest. In thermal equilibrium the molecules move with equal probabilities both ways along this direction, as expected from the detailed balance principle, well-known in chemical reactivity and in the theory of molecular motors. For molecules that possess an asymmetric potential energy surface (PES), we propose a generic method based on the application of a time-periodic external stimulus that would enable the molecules to move preferentially in a single direction thereby acting as Brownian ratchets.
View Article and Find Full Text PDFWe study a low-temperature on-surface reversible chemical reaction of oxygen atoms to molecules in ultrahigh vacuum on the semiconducting rutile TiO(110)-(1 × 1) surface. The reaction is activated by charge transfer from two sources, natural surface/subsurface polarons and experimental Kelvin probe force spectroscopy as a tool for electronic charge manipulation with single electron precision. We demonstrate a complete control over the oxygen species not attainable previously, allowing us to deliberately discriminate in favor of charge or bond manipulation, using either direct charge injection/removal through the tip-oxygen adatom junction or indirectly via polarons.
View Article and Find Full Text PDFWe present a procedure for simulating epitaxial growth based on the phase-field method. We consider a basic model in which growth is initiated by a flux of atoms onto a heated surface. The deposited atoms diffuse in the presence of this flux and eventually collide to form islands which grow and decay by the attachment and detachment of migrating atoms at their edges.
View Article and Find Full Text PDFFor the first time, the charge states of adsorbed oxygen adatoms on the rutile TiO(110)-1×1 surface are successfully measured and deliberately manipulated by a combination of noncontact atomic force microscopy and Kelvin probe force microscopy at 78 K under ultrahigh vacuum and interpreted by extensive density functional theory modeling. Several kinds of single and double oxygen adatom species are clearly distinguished and assigned to three different charge states: O/2O, O/2O, and O-O, i.e.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2018
By reacting with NaCl on Au(111), the formation of hypoxanthine (HX) tetrads is demonstrated at the atomic scale in real space. These results directly demonstrate that alternative purine tetrads can be formed in both planar and non-planar configuration, and that ionic bonding plays a crucial role for the formation and planar-to-stereo transformation of the tetrads, providing deeper insight for constructing artificial DNA/RNA quadruplexes. Moreover, both the tilted HXs and Na show strong charge transfer with the substrate in the non-planar phase.
View Article and Find Full Text PDFThe growth of graphene by molecular beam epitaxy from an elemental carbon precursor is a very promising technique to overcome some of the main limitations of the chemical vapour deposition approach, such as the possibility to synthesize graphene directly on a wide variety of surfaces including semiconductors and insulators. However, while the individual steps of the chemical vapour deposition growth process have been extensively studied for several surfaces, such knowledge is still missing for the case of molecular beam epitaxy, even though it is a key ingredient to optimise its performance and effectiveness. In this work, we have performed a combined experimental and theoretical study comparing the growth rate of the molecular beam epitaxy and chemical vapour deposition processes on the prototypical Ir (111) surface.
View Article and Find Full Text PDFOn-surface synthesis has rapidly emerged as a most promising approach to prepare functional molecular structures directly on a support surface. Compared to solution synthesis, performing chemical reactions on a surface offers several exciting new options: due to the absence of a solvent, reactions can be envisioned that are otherwise not feasible due to the insolubility of the reaction product. Perhaps even more important, the confinement to a two-dimensional surface might enable reaction pathways that are not accessible otherwise.
View Article and Find Full Text PDFThe kinetics of the thermal decomposition of hydrocarbons on the Ir(111) surface is determined using kinetic Monte Carlo (kMC) and rate equations simulations, both based on the density functional theory (DFT) calculated energy barriers of the involved reaction processes. This decomposition process is important for understanding the early stages of epitaxial graphene growth where the deposited hydrocarbon acts as a carbon feedstock for graphene formation. The methodology of the kMC simulations and the rate equation approaches is discussed and a comparison between the results obtained from both approaches is made in the case of the temperature programmed decomposition of ethylene for different initial coverages.
View Article and Find Full Text PDFThe quartet of xanthine (X), a purine base ubiquitously distributed in most human body tissues and fluids, has been for the first time fabricated and visualized, as the first alternative purine quartet besides the known guanine (G)-quartet. The X-quartet network is demonstrated to be the most stable phase on Au(111). Unlike guanine, the fabrication of the X-quartets is not dependent on the presence of metal atoms, which makes it the first metal-free purine quartet.
View Article and Find Full Text PDF