Publications by authors named "Kanti V Mardia"

Motivated by a cutting edge problem related to the shape of -helices in proteins, we formulate a parametric statistical model, which incorporates the cylindrical nature of the helix. Our focus is to detect a "kink," which is a drastic change in the axial direction of the helix. We propose a statistical model for the straight -helix and derive the maximum likelihood estimation procedure.

View Article and Find Full Text PDF

Recently described stochastic models of protein evolution have demonstrated that the inclusion of structural information in addition to amino acid sequences leads to a more reliable estimation of evolutionary parameters. We present a generative, evolutionary model of protein structure and sequence that is valid on a local length scale. The model concerns the local dependencies between sequence and structure evolution in a pair of homologous proteins.

View Article and Find Full Text PDF

Applications of circular regression models appear in many different fields such as evolutionary psychology, motor behavior, biology, and, in particular, in the analysis of gene expressions in oscillatory systems. Specifically, for the gene expression problem, a researcher may be interested in modeling the relationship among the phases of cell-cycle genes in two species with differing periods. This challenging problem reduces to the problem of constructing a piecewise circular regression model and, with this objective in mind, we propose a flexible circular regression model which allows different parameter values depending on sectors along the circle.

View Article and Find Full Text PDF

We present the theoretical foundations of a general principle to infer structure ensembles of flexible biomolecules from spatially and temporally averaged data obtained in biophysical experiments. The central idea is to compute the Kullback-Leibler optimal modification of a given prior distribution τ(x) with respect to the experimental data and its uncertainty. This principle generalizes the successful inferential structure determination method and recently proposed maximum entropy methods.

View Article and Find Full Text PDF

We develop a Bayesian model for the alignment of two point configurations under the full similarity transformations of rotation, translation and scaling. Other work in this area has concentrated on rigid body transformations, where scale information is preserved, motivated by problems involving molecular data; this is known as form analysis. We concentrate on a Bayesian formulation for statistical analysis.

View Article and Find Full Text PDF

We propose a method to formulate probabilistic models of protein structure in atomic detail, for a given amino acid sequence, based on Bayesian principles, while retaining a close link to physics. We start from two previously developed probabilistic models of protein structure on a local length scale, which concern the dihedral angles in main chain and side chains, respectively. Conceptually, this constitutes a probabilistic and continuous alternative to the use of discrete fragment and rotamer libraries.

View Article and Find Full Text PDF

It has long been known that the amino-acid sequence of a protein determines its 3-dimensional structure, but accurate ab initio prediction of structure from sequence remains elusive. We gain insight into local protein structure conformation by studying the relationship of dihedral angles in pairs of residues in protein sequences (dipeptides). We adopt a contingency table approach, exploring a targeted set of hypotheses through log-linear modelling to detect patterns of association of these dihedral angles in all dipeptides considered.

View Article and Find Full Text PDF

One of the key ingredients in drug discovery is the derivation of conceptual templates called pharmacophores. A pharmacophore model characterizes the physicochemical properties common to all active molecules, called ligands, bound to a particular protein receptor, together with their relative spatial arrangement. Motivated by this important application, we develop a Bayesian hierarchical model for the derivation of pharmacophore templates from multiple configurations of point sets, partially labeled by the atom type of each point.

View Article and Find Full Text PDF

The increasing importance of non-coding RNA in biology and medicine has led to a growing interest in the problem of RNA 3-D structure prediction. As is the case for proteins, RNA 3-D structure prediction methods require two key ingredients: an accurate energy function and a conformational sampling procedure. Both are only partly solved problems.

View Article and Find Full Text PDF

We propose a simple procedure for generating virtual protein C(alpha) traces. One of the key ingredients of our method, to build a three-dimensional structure from a random sequence of amino acids, is to work directly on torsional angles of the chain which we sample from a von Mises distribution. With simple modeling of the hydrophobic effect in protein folding, the procedure produces compact and globular structures.

View Article and Find Full Text PDF

Despite significant progress in recent years, protein structure prediction maintains its status as one of the prime unsolved problems in computational biology. One of the key remaining challenges is an efficient probabilistic exploration of the structural space that correctly reflects the relative conformational stabilities. Here, we present a fully probabilistic, continuous model of local protein structure in atomic detail.

View Article and Find Full Text PDF

A fundamental problem in bioinformatics is to characterize the secondary structure of a protein, which has traditionally been carried out by examining a scatterplot (Ramachandran plot) of the conformational angles. We examine two natural bivariate von Mises distributions--referred to as Sine and Cosine models--which have five parameters and, for concentrated data, tend to a bivariate normal distribution. These are analyzed and their main properties derived.

View Article and Find Full Text PDF

Background: Matching functional sites is a key problem for the understanding of protein function and evolution. The commonly used graph theoretic approach, and other related approaches, require adjustment of a matching distance threshold a priori according to the noise in atomic positions. This is difficult to pre-determine when matching sites related by varying evolutionary distances and crystallographic precision.

View Article and Find Full Text PDF