Escalating climate extreme events disrupt hydrological processes by affecting both water availability and sediment dynamics. However, the interconnection between hydrological variability and climatic extremes remains underexplored, particularly in cold regions under a changing climate. Here, we develop a yield-based dichotomy framework to examine the impact of shifted climatic extreme patterns on hydrological regimes in the Ishikari River Basin (IRB), Hokkaido, Japan, which is a crucial area for local agriculture and urban development.
View Article and Find Full Text PDFSimulation of future climate changes, especially temperature and rainfall, is critical for water resource management, disaster mitigation, and agricultural development. Based on the category-wise indicator method, two preferred Global Climate Models (GCMs) for the Ishikari River basin (IRB), the socio-economic center of Hokkaido, Japan, were examined from the newly released Coupled Model Intercomparison Project Phase 6 (CMIP6). Climatic variables (maximum/minimum temperature and precipitation) were projected by the Statistical DownScaling Model (SDSM) under all shared socioeconomic pathway-representative concentration pathway (SSP-RCP) scenarios (SSP1-1.
View Article and Find Full Text PDFIt is difficult to investigate the factors that control the riverine nitrate-nitrogen (NO3--N) export in a watershed which gains or losses groundwater. To control the NO3--N contamination in these watersheds, it is necessary to investigate the factors that are related to the export of NO3--N that is only produced by the watershed itself. This study was conducted in the Shibetsu watershed located in eastern Hokkaido, Japan, which gains external groundwater contribution (EXT) and 34% of the annual NO3--N loading occurs through EXT.
View Article and Find Full Text PDFRiver water quality was evaluated with respect to eutrophication and land use during spring snowmelt and summer base flow periods in Abashiri (mixed cropland-livestock farming) and Okoppe (grassland-based dairy cattle farming), eastern Hokkaido, Japan. Water from rivers and tributaries was sampled during snowmelt and summer base flow periods in 2005, and river flow was measured. Total N (TN), NO(3)-N, and Si concentrations were determined using standard methods.
View Article and Find Full Text PDFThis study was carried out to evaluate the quality of river water by analysis of land use in drainage basins and by estimating the N budgets. The drainage basins of Shibetsu River (Shibetsu area) and Bekkanbeushi River (Akkeshi area) in eastern Hokkaido, Japan were selected for a case study, and the evaluation of water quality was up-scaled to the regional level in Hokkaido by using the Arcview/GIS and statistical information. Water sampling was carried out in August 2001 and May 2002 in the Shibetsu and Akkeshi areas, respectively.
View Article and Find Full Text PDF