Publications by authors named "Kanokwan Charoenkitamorn"

This work reports the analysis of mercury using a spectrofluorometric method combined with a sequential injection analysis (SIA) system. This method is based on the measurement of fluorescence intensity of carbon dots (CDs), which is quenched proportionally after adding mercury ions. Herein, the CDs underwent environmentally friendly synthesis using a microwave-assisted approach that provides intensive and efficient energy and shortens reaction time.

View Article and Find Full Text PDF

Screen-printed graphene electrodes (SPGEs) have become a potential option in electrochemical applications because of their outstanding properties and disposable approach to miniaturize the electrodes for onsite analysis. Herein, the detection of -hydroxybenzoic acid (PHBA) in cosmetics using the anodized SPGE has been pioneered and reported. The simple anodization of the SPGE surface was operated by anodic pretreatment at a constant potential on SPGE.

View Article and Find Full Text PDF

In this work, a simple electrochemical immunoassay based on platinum nanoparticles (PtNPs) using open circuit potential (OCP) detection was developed. The detection of human chorionic gonadotropin hormone (hCG) as a model analyte, was demonstrated by direct electrical detection of PtNPs in hydrazine solution using OCP measurement without any application of either potential or current to the system. Disposable screen-printed carbon electrodes (SPCEs) were utilized for the development of our immunosensor, which required a sample volume as small as 2 μL.

View Article and Find Full Text PDF

In this work, for the first time, manganese (IV) oxide-modified screen-printed graphene electrodes (MnO/SPGEs) were developed for the simultaneous electrochemical detection of coenzyme Q10 (CoQ10) and α-lipoic acid (ALA). This sensor exhibits attractive benefits such as simplicity, low production costs, and disposability. Cyclic voltammetry (CV) was used to characterize the electrochemical behavior of the analyte and investigate the capacitance and electroactive surface area of the unmodified and modified electrode surfaces.

View Article and Find Full Text PDF

For the first time, gold nanoparticles (AuNPs) modified screen-printed carbon electrode (SPCE) was developed as working electrode in ultra-high performance liquid chromatography (UHPLC) coupled with electrochemical detection (UHPLC-ED) for simultaneous determination of thiram, disulfiram, and N,N-diethyl-N',N'-dimethylthiuram disulfide, their derivative compound. The separation was performed in reversed-phase mode using C18 column, mobile phase consisting of 55:45 (v/v) ratio of 0.05 M phosphate buffer solution (pH 5) and acetonitrile at a flow rate of 1.

View Article and Find Full Text PDF