Publications by authors named "Kanokporn Boonsong"

Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species in and around human tissues, leading to oxidative stress. We report here a system employing a microfluidic electrochemical sensor coupled directly to a particle-into-liquid sampler (PILS) system to measure aerosol oxidative activity in an on-line format.

View Article and Find Full Text PDF

Recently, the development of electrochemical biosensors as part of microfluidic devices has garnered a great deal of attention because of the small instrument size and portability afforded by the integration of electrochemistry in microfluidic systems. Electrode fabrication, however, has proven to be a major obstacle in the field. Here, an alternative method to create integrated, low cost, robust, patternable carbon paste electrodes (CPEs) for microfluidic devices is presented.

View Article and Find Full Text PDF

The effect of successive multiple ionic layer (SMIL) coatings on the velocity and direction of EOF and the separation efficiency for PDMS electrophoresis microchips was studied using different polymer structures and deposition conditions. To date, the majority of SMIL studies have used traditional CE and fused-silica capillaries. EOF was measured as a function of polymer structure and number of layers, in one case using the same anionic polymer and varying the cationic polymer and in the second case using the same cationic polymer and varying the anionic polymer.

View Article and Find Full Text PDF

Microchip CE coupled with electrochemical detection (MCE-EC) is a good method for the direct detection of many small molecule analytes because the technique is sensitive and readily miniaturized. Polymer materials are being increasingly used with MCE due to their affordability and ease of fabrication. While PDMS has become arguably the most widely used material in MCE-EC due to the simplicity of microelectrode incorporation, it suffers from a lack of separation efficiency, lower surface stability, and a tendency for analyte sorption.

View Article and Find Full Text PDF