Publications by authors named "Kannie Wai Yan Chan"

Traumatic brain injury (TBI) and stroke share a common pathophysiology that worsens over time due to secondary tissue injury caused by sustained inflammatory response. However, studies on pharmacological interventions targeting the complex secondary injury cascade have failed to show efficacy. Here, we demonstrated that low-dose ionizing radiation (LDIR) reduced lesion size and reversed motor deficits after TBI and photothrombotic stroke.

View Article and Find Full Text PDF

Unlabelled: Myelin degradation is a normal feature of brain aging that accelerates in Alzheimer's disease (AD). To date, however, the underlying biological basis of this correlation remains elusive. The amyloid cascade hypothesis predicts that demyelination is caused by increased levels of the β-amyloid (Aβ) peptide.

View Article and Find Full Text PDF

Autoimmune uveitis refers to several intraocular inflammation conditions, which are mediated by autoreactive T cells. Regulatory T cells (Tregs) are immunosuppressive cells that have shown potential for resolving various autoimmune diseases, including uveitis. However, poor donor cell dispersion distal to the injection site and plasticity of Treg cells in an inflammatory microenvironment can present obstacles for this immunotherapy.

View Article and Find Full Text PDF

The delivery of nucleic acid vaccine to stimulate host immune responses against Coronavirus disease 2019 shows promise. However, nucleic acid vaccines have drawbacks, including rapid clearance and poor cellular uptake, that limit their therapeutic potential. Microrobots can be engineered to sustain vaccine release and further control the interactions with immune cells that are vital for robust vaccination.

View Article and Find Full Text PDF

Background: Systemic activation of the immune system can exert detrimental effects on the central nervous system. Periodontitis, a chronic disease of the oral cavity, is a common source of systemic inflammation. Neuroinflammation might be a result of this to accelerate progressive deterioration of neuronal functions during aging or exacerbate pre-existing neurodegenerative diseases, such as Alzheimer's disease.

View Article and Find Full Text PDF

Peripheral nerve injury (PNI) often results in spontaneous motor recovery; however, how disrupted cerebellar circuitry affects PNI-associated motor recovery is unknown. Here, we demonstrated disrupted cerebellar circuitry and poor motor recovery in ataxia mice after PNI. This effect was mimicked by deep cerebellar nuclei (DCN) lesion, but not by damaging non-motor area hippocampus.

View Article and Find Full Text PDF

Imaging hydrogel-based local drug delivery to the brain after tumor resection has implications for refining treatments, especially for brain tumors with poor prognosis and high recurrence rate. Here, we developed a series of self-healing chitosan-dextran (CD)-based hydrogels for drug delivery to the brain. These hydrogels are injectable, self-healing, mechanically compatible, and detectable by chemical exchange saturation transfer magnetic resonance imaging (CEST MRI).

View Article and Find Full Text PDF

Short circulation lifetime, poor blood-brain barrier (BBB) permeability and low targeting specificity limit nanovehicles from crossing the vascular barrier and reaching the tumor site. Consequently, the precise diagnosis of malignant brain tumors remains a great challenge. This study demonstrates the imaging of photostable biopolymer-coated nanodiamonds (NDs) with tumor targeting properties inside the brain.

View Article and Find Full Text PDF

Two novel Gd(III) complexes with functionalised polyaminocarboxylate macrocycles, 1,4,7-tris(carboxymethyl)-9,24-dioxo-14,19-dioxa-1,4,7,10,23- pentaazacyclododecane (L(1)) and 1,4,7-tris(carboxymethyl)-9,25-dioxo-14,17,20-trioxa-1,4,7,10,23- pentaazacyclotridecane (L(2)), were prepared in good yield. Their potential use as magnetic resonance imaging (MRI) contrast agents (CAs) was evaluated by investigating their relaxation behaviour as a function of pH, temperature and magnetic field strength. The 1/T(1) proton relaxivities at 20 MHz and 25 degrees C of GdL(1) (5.

View Article and Find Full Text PDF