This study demonstrated the plant growth-promoting capabilities of native actinobacterial strains obtained from different regions of the rice plant, including the rhizosphere (FT1, FTSA2, FB2, and FH7) and endosphere (EB6). We delved into the molecular mechanisms underlying the beneficial effects of these plant-microbe interactions by conducting a transcriptional analysis of a select group of key genes involved in phytohormone pathways. Through in vitro screening for various plant growth-promoting (PGP) traits, all tested isolates exhibited positive traits for indole-3-acetic acid synthesis and siderophore production, with FT1 being the sole producer of hydrogen cyanide (HCN).
View Article and Find Full Text PDFDrought is significant abiotic stress that affects the development and yield of many crops. The present study is to investigate the effect of arbuscular mycorrhizal fungi (AMF) and biochar on root morphological traits, growth, and physiological traits in soybean under water stress. Impact of AMF and biochar on development and root morphological traits in soybean and AMF spores number and the soil enzymes' activities were studied under drought conditions.
View Article and Find Full Text PDFsp. strain FB2 is an actinomycete isolated from rice rhizosphere. A whole-genome assembly of the strain FB2 comprised 7,727,571 bp (number of contigs, 55; GC content, 71.
View Article and Find Full Text PDFInteractions among the plant microbiome and its host are dynamic, both spatially and temporally, leading to beneficial or pathogenic relationships in the rhizosphere, phyllosphere, and endosphere. These interactions range from cellular to molecular and genomic levels, exemplified by many complementing and coevolutionary relationships. The host plants acquire many metabolic and developmental traits such as alteration in their exudation pattern, acquisition of systemic tolerance, and coordination of signaling metabolites to interact with the microbial partners including bacteria, fungi, archaea, protists, and viruses.
View Article and Find Full Text PDFThe bacteria that colonize plant roots and enhance plant growth by various mechanisms are known as plant growth-promoting rhizobacteria (PGPR). The functions of rhizobacteria stand substantially unexplored and detailed insights into the aerobic rice ecosystem are yet to be examined. In this study, we have isolated rhizobacteria from rice varieties grown under aerobic conditions.
View Article and Find Full Text PDFDrought stress is the major abiotic factor limiting crop production. Co-inoculating crops with nitrogen fixing bacteria and plant growth-promoting rhizobacteria (PGPR) improves plant growth and increases drought tolerance in arid or semiarid areas. Soybean is a major source of high-quality protein and oil for humans.
View Article and Find Full Text PDFDrought is a major abiotic factor limiting plant growth and crop production. There is limited information on effect of interaction between biochar and Arbuscular mycorrhizal fungi (AMF) on okra growth, root morphological traits and soil enzyme activities under drought stress. We studied the influence of biochar and AMF on the growth of Okra () in pot experiments in a net house under drought condition.
View Article and Find Full Text PDFRhizosphere microbial communities are dynamic and play a crucial role in diverse biochemical processes and nutrient cycling. Soil type and cultivar modulate the composition of rhizosphere microbial communities. Changes in the community composition significantly alter microbial function and ecological process.
View Article and Find Full Text PDFBiochar and arbuscular mycorrhizal fungi (AMF) can promote plant growth, improve soil properties, and maintain microbial activity. The effects of biochar and AMF on plant growth, root morphological traits, physiological properties, and soil enzymatic activities were studied in spinach ( L.).
View Article and Find Full Text PDFGrain legumes are an important component of sustainable agri-food systems. They establish symbiotic association with rhizobia and arbuscular mycorrhizal fungi, thus reducing the use of chemical fertilizers. Several other free-living microbial communities (PGPR-plant growth promoting rhizobacteria) residing in the soil-root interface are also known to influence biogeochemical cycles and improve legume productivity.
View Article and Find Full Text PDFstrain W5 (MTCC 25045) is an effective diazotrophic bacterium with plant growth-promoting traits. Here, we report the draft genome assembly of this biologically and agronomically evaluated strain. The genome assembly in 55 contigs is 4,617,864 bp long, with a G+C content of 66.
View Article and Find Full Text PDFRoot-tissue colonizing bacteria demonstrated with multiple PGP traits from sorghum plants were identified as sp. EB-165, sp. EB-65, sp.
View Article and Find Full Text PDFFor remediating polluted soils, phytoextraction of metals received considerable attention in recent years, although slow removal of metals remained a major constraint in this approach. We, therefore, studied the effect of selected organic and inorganic amendments on the solubility of zinc (Zn), cadmium (Cd), and lead (Pb) in polluted soil and enhancing the efficacy of phytoextraction of these metals by Indian mustard (Brassica juncea cv. Pusa Vijay).
View Article and Find Full Text PDFstrain KMS 80 (MTCC No. 12704) is an isolate from the root tissues of rice ( L.) that displays biological nitrogen fixation and plant growth promoting abilities.
View Article and Find Full Text PDFstrain KMS 55 (MTCC 12703) is an isolate from the root tissues of rice ( L.) that displays a high biological nitrogen fixation ability. Here, we report the complete genome sequence of this strain, which contains 4,637,820 bp, 4,289 protein-coding genes, 5,006 promoter sequences, 62 tRNAs, a single copy of 5S-16S-23S rRNA, and a genome average GC content of 51.
View Article and Find Full Text PDFSymbiotic effectiveness of rhizobitoxine (Rtx)-producing strains of Bradyrhizobium spp. in soybean (cultivar NRC-37/Ahilya-4) under limited soil moisture conditions was evaluated using phenomics tools such as infrared(IR) thermal and visible imaging. Red, green and blue (RGB) colour pixels were standardized to analyse a total of 1017 IR thermal and 692 visible images.
View Article and Find Full Text PDFAppl Environ Microbiol
August 2017
In our endeavor to improve the nitrogen fixation efficiency of a soil diazotroph that would be unaffected by synthetic nitrogenous fertilizers, we have deleted a part of the negative regulatory gene and constitutively expressed the positive regulatory gene in the chromosome of CBD15, a strain isolated from the local field soil. No antibiotic resistance gene or other foreign gene was present in the chromosome of the engineered strain. Wheat seeds inoculated with this engineered strain, which we have named HKD15, were tested for 3 years in pots and 1 year in the field.
View Article and Find Full Text PDFThe soil sampled at different growth stages along the cropping period of cotton were analyzed using various molecular tools: restriction fragment length polymorphism (RFLP), terminal restriction length polymorphism (T-RFLP), and cloning-sequencing. The cluster analysis of the diazotrophic community structure of early sampled soil (0, 15, and 30 days) was found to be more closely related to each other than the later sampled one. Phylogenetic and diversity analysis of sequences obtained from the first (0 Day; C0) and last soil sample (180 day; C180) confirmed the data.
View Article and Find Full Text PDFBioactive constituents of Eupatorium adenophorum were investigated for antifungal activity. A structure-antifungal activity relationship of cadinene sesquiterpenes was predicted by evaluating individual derivatives. Cadinene derivatives were extracted from leaves of Eupatorium adenophorum using ethyl acetate.
View Article and Find Full Text PDFEighty four halotolerant bacterial strains were isolated from the saline habitats and screened for growth at different NaCl concentrations. All grew well at 5% NaCl, but only 25% isolates showed growth at 20% NaCl concentration. Five strains SL3, SL32, SL35, J8W and PU62 growing well in 20% NaCl concentrations were further characterized for multiple plant growth promoting traits such as indole -3- acetic acid (IAA) production, HCN and siderophore production, ACC deaminase activity and P-solubilization.
View Article and Find Full Text PDFAn antibacterial metabolite was isolated from Paenibacillus polymyxa HKA-15, a soybean bacterial endophyte. The purification of the crude metabolite from Paenibacillus polymyxa HKA-15 was done by column chromatography. In TLC, a spot with an R ( f ) value of 0.
View Article and Find Full Text PDFDecreased levels of ACC (1-aminocyclopropane-1-carboxylic acid) result in lower levels of endogenous ethylene, which eliminate the potentially inhibitory effects of stress-induced higher ethylene concentrations. It is worth noting the substantial ability of the bacterial species to colonize different environments, including taxonomically distinct plants cultivated in distantly separated geographical regions. For example, Enterobacter cloacae, designated as MSA1 and Enterobacter cancerogenus, designated as MSA2 were recovered from the rhizosphere of Jatropha in the present work.
View Article and Find Full Text PDFLowering of plant ethylene by deamination of its immediate precursor 1-aminocyclopropane-1-carboxylate (ACC) is a key trait found in many rhizobacteria. We isolated and screened bacteria from the rhizosphere of wheat for their ACC-degrading ability. The ACC deaminase gene (acdS) isolated from two bacterial isolates through PCR amplification was cloned and sequenced.
View Article and Find Full Text PDFThree novel endophytic rhizobial strains (RRE3, RRE5, and RRE6) were isolated from naturally growing surface-sterilized rice roots. These isolates had the ability to nodulate common bean (Phaseolus vulgaris). Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing of 16S rDNA of these isolates revealed that RRE3 and RRE5 are phylogenetically very close to Burkholderia cepacia complex, whereas RRE6 has affinity with Rhizobium leguminosarum bv.
View Article and Find Full Text PDF