Hox proteins, a sub-group of the homeodomain (HD) transcription factor family, provide positional information for axial patterning in development and evolution. Hox protein functional specificity is reached, at least in part, through interactions with Pbc (Extradenticle (Exd) in Drosophila) and Meis/Prep (Homothorax (Hth) in Drosophila) proteins. Most of our current knowledge of Hox protein specificity stems from the study of anterior and central Hox proteins, identifying the molecular and structural bases for Hox/Pbc/Meis-Prep cooperative action.
View Article and Find Full Text PDFBackground: Spinal cord injury (SCI) causes neural disconnection and persistent neurological deficits, so axon sprouting and plasticity might promote recovery. Soluble Nogo-Receptor-Fc decoy (AXER-204) blocks inhibitors of axon growth and promotes recovery of motor function after SCI in animals. This first-in-human and randomised trial sought to determine primarily the safety and pharmacokinetics of AXER-204 in individuals with chronic SCI, and secondarily its effect on recovery.
View Article and Find Full Text PDFBanks and financial institutions are vulnerable to money laundering (ML) as a result of crime proceeds infiltrating banks in the form of significant cash deposits. Improved financial crime compliance processes and systems enable anti-ML (AML) analysts to devote considerable time and effort to case investigation and process quality work, thereby lowering financial risks by reporting suspicious activity in a timely and effective manner. This study uses Job Characteristics Theory (JCT) to evaluate the AML system through the job satisfaction and motivation of its users.
View Article and Find Full Text PDFPredictive maintenance employing machine learning techniques and big data analytics is a benefit to the industrial business in the Industry 4.0 era. Companies, on the other hand, have difficulties as they move from reactive to predictive manufacturing processes.
View Article and Find Full Text PDFThe Hereditary Spastic Paraplegias (HSPs) are a group of clinically and genetically heterogeneous disorders characterized by length dependent degeneration of the corticospinal tracts. Genetic data related to HSPs are limited from India. We aimed to comprehensively analyse the phenotypic characteristics and genetic basis of a large cohort of HSP from India.
View Article and Find Full Text PDFNeural repair after traumatic spinal cord injury depends upon the restoration of neural networks via axonal sprouting and regeneration. Our previous genome wide loss-of-function screen identified Rab GTPases as playing a prominent role in preventing successful axon sprouting and regeneration. Here, we searched for Rab27b interactors and identified Rabphilin3A as an effector within regenerating axons.
View Article and Find Full Text PDF: The Malaysian government reacted to the pandemic's economic effect with the Prihatin Rakyat Economic Stimulus Package (ESP) to cushion the novel coronavirus 2019 (COVID-19) impact on households. The ESP consists of cash assistance, utility discount, moratorium, Employee Provident Fund (EPF) cash withdrawals, credit guarantee scheme and wage subsidies. A survey carried out by the Department of Statistics Malaysia (DOSM) shows that households prefer different types of financial assistance.
View Article and Find Full Text PDFForming an ultra-thin, permeable encapsulation oxide-support layer on a metal catalyst surface is considered an effective strategy for achieving a balance between high stability and high activity in heterogenous catalysts. The success of such a design relies not only on the thickness, ideally one to two atomic layers thick, but also on the morphology and chemistry of the encapsulation layer. Reliably identifying the presence and chemical nature of such a trace layer has been challenging.
View Article and Find Full Text PDFAdult mammalian central nervous system (CNS) trauma interrupts neural networks and, because axonal regeneration is minimal, neurological deficits persist. Repair via axonal growth is limited by extracellular inhibitors and cell-autonomous factors. Based on results from a screen in vitro, we evaluate nearly 400 genes through a large-scale in vivo regeneration screen.
View Article and Find Full Text PDFThe fundamental problem in axon growth and guidance is understanding how cytoplasmic signaling modulates the cytoskeleton to produce directed growth cone motility. Live imaging of the TSM1 axon of the developing wing has shown that the essential role of the core guidance signaling molecule, Abelson (Abl) tyrosine kinase, is to modulate the organization and spatial localization of actin in the advancing growth cone. Here, we dissect in detail the properties of that actin organization and its consequences for growth cone morphogenesis and motility.
View Article and Find Full Text PDFThe fundamental problem in axon growth and guidance is to understand how cytoplasmic signaling modulates the cytoskeleton to produce directed growth cone motility. We here dissect this process using live imaging of the TSM1 axon of the developing wing. We find that the growth cone is almost purely filopodial, and that it extends by a protrusive mode of growth.
View Article and Find Full Text PDFBackground: Dysfunction in inwardly rectifying potassium channel Kir4.1 has been implicated in SeSAME syndrome, an autosomal-recessive (AR), rare, multi-systemic disorder. However, not all neurological, intellectual disability, and comorbid phenotypes in SeSAME syndrome can be mechanistically linked solely to Kir4.
View Article and Find Full Text PDFTobacco in its smoke and smokeless form are major risk factors for esophageal squamous cell carcinoma (ESCC). However, molecular alterations associated with smokeless tobacco exposure are poorly understood. In the Indian subcontinent, tobacco is predominantly consumed in chewing form.
View Article and Find Full Text PDFAberrant re-entry of neurons into cell cycle appears to be an early event in Alzheimer's disease (AD) and targeting this dysregulation may have therapeutic potential. We have examined whether cell cycle dysregulation in AD can be detected using patient and control derived B-lymphocytes. Cell cycle analysis using flow cytometry demonstrated that cell cycle dysregulation occurs in AD lymphocytes, with a significant difference in the distribution of cells in G0/G1, S and G2/M phases of cell cycle as compared to control lymphocytes.
View Article and Find Full Text PDFBackground: There is emerging evidence that there are shared genetic, environmental and developmental risk factors in psychiatry, that cut across traditional diagnostic boundaries. With this background, the Discovery biology of neuropsychiatric syndromes (DBNS) proposes to recruit patients from five different syndromes (schizophrenia, bipolar disorder, obsessive compulsive disorder, Alzheimer's dementia and substance use disorders), identify those with multiple affected relatives, and invite these families to participate in this study. The families will be assessed: 1) To compare neuro-endophenotype measures between patients, first degree relatives (FDR) and healthy controls.
View Article and Find Full Text PDFNotch signaling is required for the development and physiology of nearly every tissue in metazoans. Much of Notch signaling is mediated by transcriptional regulation of downstream target genes, but Notch controls axon patterning in by local modulation of Abl tyrosine kinase signaling, via direct interactions with the Abl co-factors Disabled and Trio. Here, we show that Notch-Abl axonal signaling requires both of the proteolytic cleavage events that initiate canonical Notch signaling.
View Article and Find Full Text PDFThe Abelson tyrosine kinase (Abl) lies at the heart of one of the small set of ubiquitous, conserved signal transduction pathways that do much of the work of development and physiology. Abl signaling is essential to epithelial integrity, motility of autonomous cells such as blood cells, and axon growth and guidance in the nervous system. However, though Abl was one of the first of these conserved signaling machines to be identified, it has been among the last to have its essential architecture elucidated.
View Article and Find Full Text PDFThe Abl tyrosine kinase signaling network controls cell migration, epithelial organization, axon patterning and other aspects of development. Although individual components are known, the relationships among them remain unresolved. We now use FRET measurements of pathway activity, analysis of protein localization and genetic epistasis to dissect the structure of this network in Drosophila We find that the adaptor protein Disabled stimulates Abl kinase activity.
View Article and Find Full Text PDFThe Golgi apparatus is optimized separately in different tissues for efficient protein trafficking, but we know little of how cell signaling shapes this organelle. We now find that the Abl tyrosine kinase signaling pathway controls the architecture of the Golgi complex in Drosophila photoreceptor (PR) neurons. The Abl effector, Enabled (Ena), selectively labels the cis-Golgi in developing PRs.
View Article and Find Full Text PDFBackground: The phylogenetically conserved transcription factor Lola is essential for many aspects of axon growth and guidance, synapse formation and neural circuit development in Drosophila. To date it has been difficult, however, to obtain an overall view of Lola functions and mechanisms.
Results: We use expression microarrays to identify the lola-dependent transcriptome in the Drosophila embryo.
Abl is an essential regulator of cell migration and morphogenesis in both vertebrates and invertebrates. It has long been speculated that the adaptor protein Disabled (Dab), which is a key regulator of neuronal migration in the vertebrate brain, might be a component of this signaling pathway, but this idea has been controversial. We now demonstrate that null mutations of Drosophila Dab result in phenotypes that mimic Abl mutant phenotypes, both in axon guidance and epithelial morphogenesis.
View Article and Find Full Text PDFDuring development, neural progenitor cells or neuroblasts generate a great intra- and inter-segmental diversity of neuronal and glial cell types in the nervous system. In thoracic segments of the embryonic central nervous system of Drosophila, the neuroblast NB6-4t undergoes an asymmetric first division to generate a neuronal and a glial sublineage, while abdominal NB6-4a divides once symmetrically to generate only 2 glial cells. We had earlier reported a critical function for the G1 cyclin, CyclinE (CycE) in regulating asymmetric cell division in NB6-4t.
View Article and Find Full Text PDFHomeotic/Hox genes are known to specify a given developmental pathway by regulating the expression of downstream effector genes. During embryonic CNS development of Drosophila, the Hox protein Abdominal-A (AbdA) is required for the specification of the abdominal NB6-4 lineage. It does so by down regulating the expression of the cell cycle regulator gene Dcyclin E (CycE).
View Article and Find Full Text PDF