Publications by authors named "Kanka Ghosh"

Phonon hydrodynamics is an exotic phonon transport phenomenon that challenges the conventional understanding of diffusive phonon scattering in crystalline solids. It features a peculiar collective motion of phonons with various unconventional properties resembling fluid hydrodynamics, facilitating non Fourier heat transport. Hence, it opens up several new avenues to enrich the knowledge and implementations on phonon physics, phonon engineering, and micro and nanoelectronic device technologies.

View Article and Find Full Text PDF

We investigate the temperature evolution of dynamics and structure of partially confined Lennard Jones (LJ) fluids in supercritical phase along an isobaric line in the P-T phase diagram using molecular dynamics simulations. We compare the Frenkel line (FL) crossover features of partially confined LJ fluids to that of the bulk LJ fluids in supercritical phase. Five different spacings have been chosen in this study and the FL crossover characteristics have been monitored for each of these spacings for temperatures ranging from 240 K to 1500 K keeping the pressure fixed at 5000 bar.

View Article and Find Full Text PDF

The interplay between the structure and dynamics of partially confined Lennard Jones (LJ) fluids, deep into the supercritical phase, is studied over a wide range of densities in the context of the Frenkel line (FL), which separates rigid liquidlike and non-rigid gaslike regimes in the phase diagram of the supercritical fluids. Extensive molecular dynamics simulations carried out at the two ends of the FL (P = 5000 bars, T = 300 K, and T = 1500 K) reveal intriguing features in supercritical fluids as a function of stiffness of the partially confining atomistic walls. The liquidlike regime of a LJ fluid (P = 5000 bars, T = 300 K), mimicking argon, partially confined between walls separated by 10 Å along the z-axis, and otherwise unconstrained, reveals amorphous and liquidlike structural signatures in the radial distribution function parallel to the walls and enhanced self-diffusion as the wall stiffness is decreased.

View Article and Find Full Text PDF

The existence of the Frenkel line in the supercritical regime of a Lennard-Jones (LJ) fluid shown through molecular dynamics (MD) simulations initially and later corroborated by experiments on argon opens up possibilities of understanding the structure and dynamics of supercritical fluids in general and of the Frenkel line in particular. The location of the Frenkel line, which demarcates two distinct physical states, liquidlike and gaslike within the supercritical regime, has been established through MD simulations of the velocity autocorrelation (VACF) and radial distribution function (RDF). We, in this article, explore the changes in the structural features of supercritical LJ fluid under partial confinement using atomistic walls.

View Article and Find Full Text PDF