Publications by authors named "Kanitthamniyom Pojchanun"

In vitro diagnostics (IVD) plays a critical role in healthcare and public health management. Magnetic digital microfluidics (MDM) perform IVD assays by manipulating droplets on an open substrate with magnetic particles. Automated IVD based on MDM could reduce the risk of accidental exposure to contagious pathogens among healthcare workers.

View Article and Find Full Text PDF

Carbapenemase-producing Gram-negative bacilli (CPGNB) is a type of antibiotic-resistant pathogens that often lead to severe clinical consequences. Phenotypic tests, such as Carba NP and blue Carba, are able to detect the resistant mechanism and provide rapid detection of carbapenemase producers to potentially guide personalized therapy. However, these tests require relatively tedious hands-on fluidic operations, and the assay format is ill-suited for automation and parallelization for improved throughput.

View Article and Find Full Text PDF

3D printing via vat photopolymerization (VP) is a highly promising approach for fabricating magnetic soft millirobots (MSMRs) with accurate miniature 3D structures; however, magnetic filler materials added to resin either strongly interfere with the photon energy source or sediment too fast, resulting in the nonuniformity of the filler distribution or failed prints, which limits the application of VP. To this end, a circulating vat photopolymerization (CVP) platform that can print MSMRs with high uniformity, high particle loading, and strong magnetic response is presented. After extensive characterization of materials and 3D printed parts, it is found that SrFe O is an ideal magnetic filler for CVP and can be printed with 30% particle loading and high uniformity.

View Article and Find Full Text PDF

Three-dimensional food printing offers the possibility of modifying the structural design, nutrition, and texture of food, which may be used for consumers with special dietary requirements such as dysphagic patients. One of the food matrices that can be used for liquid delivery to dysphagic patients is food foams. Foams are widely used in different food products to adjust food density, rheological properties, and texture.

View Article and Find Full Text PDF

Carbapenemase-producing (CPE) are a group of drug-resistant Gram-negative pathogens that are classified as a critical threat by the World Health Organization (WHO). Conventional methods of detecting antibiotic-resistant pathogens do not assess the resistance mechanism and are often time-consuming and laborious. We have developed a magnetic digital microfluidic (MDM) platform, known as MDM Carba, for the identification of CPE by measuring their ability to hydrolyze carbapenem antibiotics.

View Article and Find Full Text PDF

Magnetic digital microfluidics (MDM) manipulates fluids in the form of droplets on an open substrate, and incorporates surface energy traps (SETs) to facilitate the droplet manipulation. Conventional MDM devices are fabricated monolithically, which makes it difficult to modify the device configuration without completely overhauling the original design. In this paper, we present a modular MDM architecture that enables rapid on-demand configuration and re-configuration of MDM platforms for customized bioanalyses.

View Article and Find Full Text PDF

Magnetic digital microfluidics uses magnetic force to manipulate droplets on a Teflon-coated substrate through the added magnetic particles. To achieve a wide range of droplet manipulation, hydrophilic patterns, known as surface energy traps, are introduced onto the Teflon-coated hydrophobic substrate. However, the Teflon-coated substrate is difficult to modify because it is nonwettable, and existing techniques for patterning surface energy traps have many limitations.

View Article and Find Full Text PDF