Publications by authors named "Kanishka Pushpitha"

Article Synopsis
  • Cyclotides are stable cyclic peptides with potential to protect neurons in neurological disorders by modifying their structure for better delivery.
  • The study involved enhancing the cyclotide MCoTI-II with polyarginines and inserting an NMDA receptor inhibitor sequence, which improved neuronal uptake and prevented cell death from excitotoxicity.
  • In tests, the modified cyclotide (c5R-NR2B9c) not only protected primary neurons but also increased survival and reduced seizure severity in a mouse model, indicating its potential as a therapeutic strategy.
View Article and Find Full Text PDF

Photoreceptor cells are highly susceptible to oxidative-stress-induced damage due to their high metabolic rate. Oxidative stress plays a key role in driving pathological events in several different ocular diseases, which lead to retinal degeneration and ultimately blindness. A growing number of studies have been performed to understand downstream events caused by ROS induced oxidative stress in photoreceptor cells; however, the underlying mechanisms of ROS toxicity are not fully understood.

View Article and Find Full Text PDF
Article Synopsis
  • Our research indicates that neuroserpin (NS), a serine protease inhibitor, loses its effectiveness due to oxidation in glaucoma, negatively impacting retinal health.
  • By using genetic models and antibody techniques, we found that reduced NS leads to structural and functional impairments in the retina, as it affects key markers related to cell maintenance and inflammation.
  • Introducing a new variant of NS resistant to oxidation showed promising results in protecting retinal cells and restoring normal functions in glaucoma-affected models, highlighting NS's potential as a therapeutic target.
View Article and Find Full Text PDF

Sphingosine-1-phosphate receptor (S1PR) signaling regulates diverse pathophysiological processes in the central nervous system. The role of S1PR signaling in neurodegenerative conditions is still largely unidentified. Siponimod is a specific modulator of S1P1 and S1P5 receptors, an immunosuppressant drug for managing secondary progressive multiple sclerosis.

View Article and Find Full Text PDF

Neuroserpin is an axonally secreted serpin that is involved in regulating plasminogen and its enzyme activators, such as tissue plasminogen activator (tPA). The protein has been increasingly shown to play key roles in neuronal development, plasticity, maturation and synaptic refinement. The proteinase inhibitor may function both independently and through tPA-dependent mechanisms.

View Article and Find Full Text PDF

SH2 domain containing tyrosine phosphatase 2 (Shp2; PTPN11) regulates several intracellular pathways downstream of multiple growth factor receptors. Our studies implicate that Shp2 interacts with Caveolin-1 (Cav-1) protein in retinal ganglion cells (RGCs) and negatively regulates BDNF/TrkB signaling. This study aimed to investigate the mechanisms underlying the protective effects of shp2 silencing in the RGCs in glaucomatous conditions.

View Article and Find Full Text PDF

Different parts of the brain are affected distinctively in various stages of the Alzheimer's disease (AD) pathogenesis. Identifying the biochemical changes in specific brain regions is key to comprehend the neuropathological mechanisms in early pre-symptomatic phases of AD. Quantitative proteomics profiling of four distinct areas of the brain of young APP/PS1 mouse model of AD was performed followed by biochemical pathway enrichment analysis.

View Article and Find Full Text PDF

Current evidence suggests that exposure to chronically induced intraocular pressure (IOP) leads to neurodegenerative changes in the inner retina. This study aimed to determine retinal proteomic alterations in a rat model of glaucoma and compared findings with human retinal proteomics changes in glaucoma reported previously. We developed an experimental glaucoma rat model by subjecting the rats to increased IOP (9.

View Article and Find Full Text PDF

Background: Severe acute respiratory syndrome (SARS) has been initiating pandemics since the beginning of the century. In December 2019, the world was hit again by a devastating SARS episode that has so far infected almost four million individuals worldwide, with over 200,000 fatalities having already occurred by mid-April 2020, and the infection rate continues to grow exponentially. SARS coronavirus 2 (SARS-CoV-2) is a single stranded RNA pathogen which is characterised by a high mutation rate.

View Article and Find Full Text PDF

Extracellular deposits of the amyloid-beta peptide (Aβ) are known as the main pathological hallmark of Alzheimer's disease. In Alzheimer's disease, neurons are injured and die throughout the brain, a process in which Aβ neurotoxicity is considered to play an important role. However, the molecular mechanisms underlying Aβ toxicity that lead to neurodegeneration are not clearly established.

View Article and Find Full Text PDF

Amyloid β (Aβ) accumulation and its aggregation is characteristic molecular feature of the development of Alzheimer's disease (AD). More recently, Aβ has been suggested to be associated with retinal pathology associated with AD, glaucoma and drusen deposits in age related macular degeneration (AMD). In this study, we investigated the proteins and biochemical networks that are affected by Aβ in the 661 W photoreceptor cells in culture.

View Article and Find Full Text PDF

Increased amyloid β (Aβ) aggregation is a hallmark feature of Alzheimer's disease (AD) pathology. The APP/PS1 mouse model of AD exhibits accumulation of Aβ in the retina and demonstrates reduced retinal function and other degenerative changes. The overall molecular effects of AD pathology on the retina remain undetermined.

View Article and Find Full Text PDF

Retinoid X receptors (RXRs) play an important role in transcription, are involved in numerous cellular networks from cell proliferation to lipid metabolism and are essential for normal eye development. RXRs form homo or heterodimers with other nuclear receptors, bind to DNA response elements and regulate several biological processes including neurogenesis. Mounting evidence suggests that RXR activation by selective RXR modulators (sRXRms) may be neuroprotective in the central nervous system.

View Article and Find Full Text PDF