Publications by authors named "Kanika Bhardwaj"

The trace metal ion manganese (Mn) in excess is toxic. Therefore, a small subset of factors tightly maintains its cellular level, among which an efflux protein MntP is the champion. Multiple transcriptional regulators and a manganese-dependent translational riboswitch regulate the MntP expression in Escherichia coli.

View Article and Find Full Text PDF

Parkinson's disease is a progressive neurodegenerative disorder marked by the death of dopaminergic neurons in the substantia nigra region of the brain. Aggregation of alpha-synuclein (α-synuclein) is a contributing factor to Parkinson's disease pathogenesis. The objective of this study is to investigate the neuroprotective effects of gut microbes on α-synuclein aggregation using both in silico and in vivo approaches.

View Article and Find Full Text PDF

JOURNAL/ijpha/04.03/01363791-202456010-00007/figure1/v/2024-03-07T095025Z/r/image-tiff Parkinson's disease (PD) is the most common neurodegenerative disease caused by the steady depletion of dopamine in the striatum due to the loss of dopaminergic neurons. Most of the current therapeutics work on rebuilding the striatal dopamine level through oral administration of levodopa which stops the symptoms of PD.

View Article and Find Full Text PDF

The termination factor Rho, an ATP-dependent RNA translocase, preempts pervasive transcription processes, thereby rendering genome integrity in bacteria. Here, we show that the loss of Rho function raised the intracellular pH to >8.0 in .

View Article and Find Full Text PDF

Iris implants were originally described as an option to treat photophobia and glare associated with aniridia, coloboma, corectopia or any other causes of acquired or congenital iris defects. They are not designed to be used in healthy phakic eyes and not approved by regulatory bodies anywhere in the world for cosmesis. However, widespread publicity and the compulsive need for beautification has popularised the use of these implants illicitly.

View Article and Find Full Text PDF

The shortage of donor corneal tissue worldwide has led to extensive research for alternate corneal equivalents utilizing tissue engineering methods. We conducted experiments using Poly D, L lactic acid polymer along with a copolymer (Eudragit) in varying concentrations to create a biodegradable scaffold suitable for in vitro growth of corneal epithelial stem cells. It was found that stable, spherical, and porous microparticles can be prepared by combining PDLLA and Eudragit RL100 polymers in the ratio of 90:10 and 70:30.

View Article and Find Full Text PDF