Substitution of monocrystalline or polycrystalline silicon as active materials in photovoltaics with highly efficient perovskite materials is quite common. Although perovskite materials offer better flexibility, are cost-effective, and have higher conversion efficiency, they still require structural modifications for better performance. This study quantitatively investigates how mesoporous top surfaces improve the performance of methylammonium lead iodide ( ) perovskite solar cells.
View Article and Find Full Text PDFEnhancement of optical to electrical conversion is vital for improving the efficiency of any solar cell. In recent years, use of thin films instead of bulk wafers has resulted in a huge reduction of production cost, and as such, efficiency enhancement of thin-film solar cells is considered in this study. Though this enhancement depends on several factors, most significant among them is the increase in light absorption within the active material of the solar cell.
View Article and Find Full Text PDFThe characterization of imaging methods as three-dimensional (3D) linear filtering operations provides a useful way to compare the 3D performance of optical surface topography measuring instruments, such as coherence scanning interferometry, confocal and structured light microscopy. In this way, the imaging system is defined in terms of the point spread function in the space domain or equivalently by the transfer function in the spatial frequency domain. The derivation of these characteristics usually involves making the Born approximation, which is strictly only applicable to weakly scattering objects; however, for the case of surface scattering, the system is linear if multiple scattering is assumed to be negligible and the Kirchhoff approximation is assumed.
View Article and Find Full Text PDF