Introduction: The yield and quality of tomato (Solanum lycopersicum. L) are often decreased when plants suffer from low light intensity and short-photoperiod in winter. Manipulation of the artificial light environment is a feasible technology to promote off-seasonal production and improve fruit nutritional quality in the greenhouse.
View Article and Find Full Text PDFIncreasing photosynthesis and light capture offers possibilities for improving crop yield and provides a sustainable way to meet the increasing global demand for food. However, the poor light transmittance of transparent plastic films and shade avoidance at high planting density seriously reduce photosynthesis and alter fruit quality in vegetable crops, and therefore it is important to investigate the mechanisms of light signaling regulation of photosynthesis and metabolism in tomato (). Here, a combination of red, blue, and white (R1W1B0.
View Article and Find Full Text PDFCold stress is a key environmental constraint that dramatically affects the growth, productivity, and quality of tomato (Solanum lycopersicum); however, the underlying molecular mechanisms of cold tolerance remain poorly understood. In this study, we identified REDUCED CHLOROPLAST COVERAGE 2 (SlREC2) encoding a tetratricopeptide repeat protein that positively regulates tomato cold tolerance. Disruption of SlREC2 largely reduced abscisic acid (ABA) levels, photoprotection, and the expression of C-REPEAT BINDING FACTOR (CBF)-pathway genes in tomato plants under cold stress.
View Article and Find Full Text PDF