Organelles play essential roles in cellular homeostasis and various cellular functions in eukaryotic cells. The current experimental strategy to modulate organelle functions is limited due to the dynamic nature and subcellular distribution of organelles in live cells. Optogenetics utilizes photoactivatable proteins to enable dynamic control of molecular activities through visible light.
View Article and Find Full Text PDFBio-waste is a side product of biomedical research containing carbon, which can be utilized for developing carbon dots (CDs). CDs are known to be useful for a variety of applications because of their unique photoluminescence, low toxicity, and straightforward synthesis. In this paper, we employed a one-step hydrothermal method to prepare CDs from bio-waste as the only reactant.
View Article and Find Full Text PDFCells contain intricate protein nanostructures, but replicating them outside of cells presents challenges. One such example is the vertical fibronectin pillars observed in embryos. Here, we demonstrate the creation of cell-free vertical fibronectin pillar mimics using nonequilibrium self-assembly.
View Article and Find Full Text PDFMitochondria are dynamic organelles that undergo fusion and fission events, in which the mitochondrial membrane and DNA (mtDNA) play critical roles. The spatiotemporal organization of mtDNA reflects and impacts mitochondrial dynamics. Herein, to study the detailed dynamics of mitochondrial membrane and mtDNA, we rationally develop a dual-color fluorescent probe, mtGLP, that could be used for simultaneously monitoring mitochondrial membrane and mtDNA dynamics via separate color outputs.
View Article and Find Full Text PDFStructured illumination microscopy (SIM) is a super-resolution technology for imaging living cells and has been used for studying the dynamics of lysosomes and mitochondria. Recently, new probes and analyzing methods have been developed for SIM imaging, enabling the quantitative analysis of these subcellular structures and their interactions. This review provides an overview of the working principle and advances of SIM, as well as the organelle-targeting principles and types of fluorescence probes, including small molecules, metal complexes, nanoparticles, and fluorescent proteins.
View Article and Find Full Text PDFDetecting cell viability is crucial in research involving the precancerous discovery of abnormal cells, the evaluation of treatments, and drug toxicity testing. Although conventional methods afford cumulative results regarding cell viability based on a great number of cells, they do not permit investigating cell viability at the single-cell level. In response, we rationally designed and synthesized a fluorescent probe, PCV-1, to visualize cell viability under the super-resolution technology of structured illumination microscopy.
View Article and Find Full Text PDFTwo-photon absorbing fluorescent probes have emerged as powerful imaging tools for subcellular-level monitoring of biological substances and processes, offering advantages such as deep light penetration, minimal photodamage, low autofluorescence, and high spatial resolution. However, existing two-photon absorbing probes still face several limitations, such as small two-photon absorption cross-section, poor water solubility, low membrane permeability, and potentially high toxicity. Herein, we report three small-molecule probes, namely MSP-1arm, Lyso-2arm, and Mito-3arm, composed of a pyridinium center (electron-acceptor) and various methoxystyrene "arms" (electron-donor).
View Article and Find Full Text PDFAdv Drug Deliv Rev
August 2023
Optical microscopes are an important imaging tool that have effectively advanced the development of modern biomedicine. In recent years, super-resolution microscopy (SRM) has become one of the most popular techniques in the life sciences, especially in the field of living cell imaging. SRM has been used to solve many problems in basic biological research and has great potential in clinical application.
View Article and Find Full Text PDFDetecting cell viability is crucial in research involving the precancerous discovery of abnormal cells, the evaluation of treatments, and drug toxicity testing. Although conventional methods afford cumulative results regarding cell viability based on a great number of cells, they do not permit investigating cell viability at the single-cell level. In response, we rationally designed and synthesized a fluorescent probe, PCV-1, to visualize cell viability under the super-resolution technology of structured illumination microscopy.
View Article and Find Full Text PDFEndolysosome dynamics plays an important role in autophagosome biogenesis. Hence, imaging the subcellular dynamics of endolysosomes using high-resolution fluorescent imaging techniques would deepen our understanding of autophagy and benefit the development of pharmaceuticals against endosome-related diseases. Taking advantage of the intramolecular charge-transfer mechanism, herein we report a cationic quinolinium-based fluorescent probe (PyQPMe) that exhibits excellent pH-sensitive fluorescence in endolysosomes at different stages of interest.
View Article and Find Full Text PDFWith the progression of nanotechnology, a growing number of nanomaterials have been created and incorporated into organisms and ecosystems, which raises significant concern about potential hazards of these materials on human health, wildlife, and the environment. Two-dimensional (2D) nanomaterials are one type of nanomaterials with thicknesses ranging from that of a single atom or of several atoms and have been proposed for a variety of biomedical applications such as drug delivery and gene therapy, but the toxicity thereof on subcellular organelles remains to be studied. In this work, we studied the impact of two typical 2D nanomaterials, MoS and BN nanosheets, on mitochondria, which are a type of membranous subcellular organelle that provides energy to cells.
View Article and Find Full Text PDFThe endoplasmic reticulum's (ER) dynamic nature, essential for maintaining cellular homeostasis, can be influenced by stress-induced damage, which can be assessed by examining the morphology of ER dynamics and, more locally, ER properties such as hydrophobicity, viscosity, and polarity. Although numerous ER-specific chemical probes have been developed to monitor the ER's physical and chemical parameters, the quantitative detection and super-resolution imaging of its local hydrophobicity have yet to be explored. Here, we describe a photostable ER-targeted probe with high signal-to-noise ratio for super-resolution imaging that can specifically respond to changes in ER hydrophobicity under stress based on a "reserve-release" mechanism.
View Article and Find Full Text PDFMitochondria are highly dynamic organelles whose fragmentation by fission is critical to their functional integrity and cellular homeostasis. Here, we develop a method via optogenetic control of mitochondria-lysosome contacts (MLCs) to induce mitochondrial fission with spatiotemporal accuracy. MLCs can be achieved by blue-light-induced association of mitochondria and lysosomes through various photoactivatable dimerizers.
View Article and Find Full Text PDFAs a process of cellular uptake, endocytosis, with gradient acidity in different endocytic vesicles, is vital for the homeostasis of intracellular nutrients and other functions. To study the dynamics of endocytic pathway, a membrane-anchored pH probe, ECGreen, is synthesized to visualize endocytic vesicles under structured illumination microscopy (SIM), a super-resolution technology. Being sensitive to acidity with increasing fluorescence at low pH, ECGreen can differentiate early and late endosomes as well as endolysosomes.
View Article and Find Full Text PDFAn RGD-peptide conjugated ruthenium(ii) complex has been developed, which functions as a two-photon absorption (TPA) photodynamic therapy (PDT) agent for ablating tumours by selectively targeting the mitochondria of integrin αβ-rich tumour cells. This approach offers a new and effective design and application for tumour-targeting metallo-anticancer drugs via two-photon PDT.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2020
Oxidative stress induced by reactive oxygen species (ROS) is one of the major pathological mechanisms of acute kidney injury (AKI). Inorganic nanomaterial-mediated antioxidant therapy is considered a promising method for the prevention of AKI; however, currently available antioxidants for AKI exhibit limited clinical efficacy due to the glomerular filtration threshold (∼6 nm). To address this issue, we developed ultrasmall RuO nanoparticles (RuONPs) (average size ≈ 2 nm).
View Article and Find Full Text PDFCorrection for 'Synthesis, characterization and anticancer mechanism studies of fluorinated cyclometalated ruthenium(ii) complexes' by Ya Wen et al., Dalton Trans., 2020, DOI: .
View Article and Find Full Text PDFBecause lysosomes play critical roles in multiple cellular functions and are associated with many diseases, studying them at the subcellular level could elucidate their functionality and support the discovery of therapeutic drugs for treating those diseases. The commonly used dyes for super-resolution imaging of lysosomes are the commercial molecular LysoTrackers. But the tolerance to changes in the lysosomal microenvironment and to lysosomal membrane permeabilization (LMP) and the photostability of the LysoTrackers are worrisome.
View Article and Find Full Text PDFCorrection for 'Fabrication of red blood cell membrane-camouflaged Cu2-xSe nanoparticles for phototherapy in the second near-infrared window' by Zhou Liu et al., Chem. Commun.
View Article and Find Full Text PDFCorrection for 'Mitochondria-targeted Ir@AuNRs as bifunctional therapeutic agents for hypoxia imaging and photothermal therapy' by Libing Ke et al., Chem. Commun.
View Article and Find Full Text PDF