1988 lncRNAs were identified in sweet sorghum roots under cadmium treatment; lncRNA 15962 and lncRNA 11558 were validated to be the key lncRNAs involved in regulating cadmium accumulation and translocation. Cadmium (Cd) has become one of the most harmful and widespread pollutants with industry development. Sweet sorghum is an ideal plant for phytoremediation of Cd-contaminated soil.
View Article and Find Full Text PDFCell wall is involved in plant growth and plays pivotal roles in plant adaptation to environmental stresses. Cell wall remodelling may be crucial to salt adaptation in the euhalophyte Salicornia europaea. However, the mechanism underlying this process is still unclear.
View Article and Find Full Text PDFSbYS1 and its upstream transcription factor SbWRKY72 were involved in Cd tolerance and accumulation and are valuable for developing sweet sorghum germplasm with high-Cd tolerance or accumulation ability through genetic manipulation. Cadmium (Cd) is highly toxic and can severely affect human health. Sweet sorghum, as an energy crop, shows great potential in extracting cadmium from Cd-contaminated soils.
View Article and Find Full Text PDFSalinity and phosphate (Pi) starvation are the most common abiotic stresses that threaten crop productivity. Salt cress (Eutrema salsugineum) displays good tolerance to both salinity and Pi limitation. Previously, we found several Phosphate Transporter (PHT) genes in salt cress upregulated under salinity.
View Article and Find Full Text PDFKey miRNAs including sbi-miR169p/q, sbi-miR171g/j, sbi-miR172a/c/d, sbi-miR172e, sbi-miR319a/b, sbi-miR396a/b, miR408, sbi-miR5384, sbi-miR5565e and nov_23 were identified to function in the regulation of Cd accumulation and tolerance. As an energy plant, sweet sorghum shows great potential in the phytoremediation of Cd-contaminated soils. However, few studies have focused on the regulatory roles of miRNAs and their targets under Cd stress.
View Article and Find Full Text PDFSalinity-induced lipid alterations have been reported in many plant species; however, how lipid biosynthesis and metabolism are regulated and how lipids work in plant salt tolerance are much less studied. Here, a constitutively much higher phosphatidylserine (PS) content in the plasma membrane (PM) was found in the euhalophyte Salicornia europaea than in Arabidopsis. A gene encoding PS synthase (PSS) was subsequently isolated from S.
View Article and Find Full Text PDFPlant Physiol Biochem
October 2020
Phytosterols are a group of sterols exclusive to plants and fungi, but are indispensable to humans because of their medicinal and nutritional values. However, current raw materials used for phytosterols extraction add to the cost and waste in the process. For higher sterols production, major attention is drawn to plant materials abundant in phytosterols and genetic modification.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
March 2020
Phytoremediation is one of the important methods for restoring heavy-metal contaminated soils. Using high-biomass economic plants to restore heavy-metal contaminated soils can have both ecological and economic benefits, with great application prospects. Based on the analysis of current situation and existing problems of phytoremediation, we propose the advantages of high-biomass economic plants in contaminated soil remediation, and summarize the recent advances and mechanisms involved in absorbing heavy metals in high-biomass economic plants.
View Article and Find Full Text PDF