Bladder cancer (BC) is one of the most common malignant tumors of the urinary system, and has a high recurrence rate and treatment resistance. Recent results indicate that mitochondrial metabolism influences the therapeutic outcomes of BC. Mitochondria-targeted photosensitizer (PS) is a promising anticancer therapeutic approach that may overcome the limitations of conventional BC treatments.
View Article and Find Full Text PDFNeutrophil extracellular traps (NETs) are web-like complexes of DNA and proteins that are extruded by activated neutrophils and play critical roles as major components of the innate immune response against pathogen invasion. However, some microbes have developed strategies to evade NET attacks, leading to impaired immune defenses and persistent infections. In this study, an engineered neutrophil strategy for enhancing the antibacterial activity of NETs is developed.
View Article and Find Full Text PDFMitochondrial viscosity serves as a critical indicator for assessing mitochondrial functionality and offers valuable insights into cellular homeostasis. Continuous, real-time monitoring of mitochondrial viscosity is indispensable for understanding and diagnosing diseases associated with these dynamic changes. In this study, we introduce a novel mitochondrial viscosity-responsive probe named "JL-JC" which is designed by using a molecular strategy, with a classic "D-π-A" molecular structure.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) is pivotal for mitochondrial morphology and function. Upon mtDNA damage, mitochondria undergo quality control mechanisms, including fusion, fission, and mitophagy. Real-time monitoring of mtDNA enables a deeper understanding of its effect on mitochondrial function and morphology.
View Article and Find Full Text PDFEukaryotic cells regulate various cellular processes through membrane-bound and membrane-less organelles, enabling active signal communication and material exchange. Lysosomes and lipid droplets are representative organelles, contributing to cell lipophagy when their interaction and metabolism are disrupted. Our limited understanding of the interacting behaviours and physicochemical properties of different organelles during lipophagy hinders accurate diagnosis and treatment of related diseases.
View Article and Find Full Text PDFVisualization of the mitochondrial state is crucial for tracking cell life processes and diagnosing disease, while fluorescent probes that can accurately assess mitochondrial status are currently scarce. Herein, a fluorescent probe named "" was designed and prepared, which can target mitochondria via the mitochondrial membrane potential. Upon pathology or external stimulation, can be released from the mitochondria and accumulate in the nucleolus to monitor the status of mitochondria.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is the most aggressive and lethal form of human brain tumors. Dismantling the suppressed immune microenvironment is an effective therapeutic strategy against GBM; however, GBM does not respond to exogenous immunotherapeutic agents due to low immunogenicity. Manipulating the mitochondrial electron transport chain (ETC) elevates the immunogenicity of GBM, rendering previously immune-evasive tumors highly susceptible to immune surveillance, thereby enhancing tumor immune responsiveness and subsequently activating both innate and adaptive immunity.
View Article and Find Full Text PDFImaging-guided photodynamic therapy (PDT) holds great potential for tumor therapy. However, achieving the synergistic enhancement of the reactive oxygen species (ROS) generation efficiency and fluorescence emission of photosensitizers (PSs) remains a challenge, resulting in suboptimal image guidance and theranostic efficacy. The hypoxic tumor microenvironment also hinders the efficacy of PDT.
View Article and Find Full Text PDFNormally, small-molecule fluorescent probes dependent on the mitochondrial membrane potential (MMP) are invalid for fixed cells and tissues, which limits their clinical applications when the fixation of pathological specimens is imperative. Given that mitochondrial morphology is closely associated with disease, we developed a long-chain mitochondrial probe for fixed cells and tissues, , by installing a C-alkyl chain into the quinoline moiety. In fixed cells stained with , filament mitochondria and folded cristae were observed with confocal and structural illumination microscopy, respectively.
View Article and Find Full Text PDFThe efficacy of imaging-guided photodynamic therapy (PDT) is compromised by the attenuation of fluorescence and decline in reactive oxygen species (ROS) generation efficiency in the physiological environment of conventional photosensitizers, limited near-infrared (NIR) absorption, and high systemic cytotoxicity. This paper presents the synthesis of two cyclometalated Ir (III) complexes (Ir-thpy and Ir-ppy) by using a triphenylamine derivative (DPTPA) as the primary ligand and their encapsulation into an amphiphilic phospholipid to form nanoparticles (NPs). These complexes exhibit aggregation-induced emission features and remarkably enhanced ROS generation compared to Chlorin e6 (Ce6).
View Article and Find Full Text PDFMitochondria are dynamic organelles that undergo fusion and fission events, in which the mitochondrial membrane and DNA (mtDNA) play critical roles. The spatiotemporal organization of mtDNA reflects and impacts mitochondrial dynamics. Herein, to study the detailed dynamics of mitochondrial membrane and mtDNA, we rationally develop a dual-color fluorescent probe, mtGLP, that could be used for simultaneously monitoring mitochondrial membrane and mtDNA dynamics via separate color outputs.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
October 2023
The derivatives of sulfur dioxide (HSO) formed in the biological environment play a vital role in the circulation system. Excessive SO derivatives will cause serious damage to the living system. Herein, a two-photon phosphorescent probe based on Ir(III) complex (named as Ir-CN) was designed and synthesized.
View Article and Find Full Text PDFPurpose: Proximal humerus fractures (PHFs) are common. With the development of locking plates, open reduction and internal fixation (ORIF) of the proximal humerus can provide excellent clinical outcomes. The quality of fracture reduction is crucial in the locking plate fixation of proximal humeral fractures.
View Article and Find Full Text PDFHydrazine is widely used in industrial and agricultural production, but excessive hydrazine possesses a serious threat to human health and environment. Here two new ratiometric fluorescence probes, and , with the hydroxyl coumarin chalcone unit as the sensing site are developed, which can achieve colorimetric and ratiometric recognition for hydrazine with good sensitivity, excellent selectivity, and anti-interference. The calculated fluorescence limits of detections are 0.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2022
A fluorescent probe 1 based on julolidine-chalcone derivative, which can specifically recognize aluminum ion with high selectivity and anti-interference, was developed. Probe 1 has good fluorescence stability and can detect Al with turn-on fluorescence in a wide pH range of 4.0-9.
View Article and Find Full Text PDFThe nucleus is considered the ideal target for anti-tumor therapy because DNA and some enzymes in the nucleus are the main causes of cell canceration and malignant proliferation. However, nuclear target drugs with good biosafety and high efficiency in cancer treatment are rare. Herein, a nuclear-targeted material MeTPAE with aggregation-induced emission (AIE) characteristics was developed based on a triphenylamine structure skeleton.
View Article and Find Full Text PDFDue to the aggregation-caused quenching effect and near-infrared I poor penetration capabilities of common fluorescent molecules, their applications in visualized imaging and photoactivated treatment are limited. Therefore, new near-infrared II (NIR-II) molecule (named TST), which had the abilities of aggregation-induced emission (AIE) and photothermal therapy are synthesized. Moreover, in order to further improve its fluorescent yield and therapeutic effect, camptothecin prodrug (CPT-S-PEG) and novel immune checkpoint inhibitor AZD4635 are used to co-assemble with TST into nanoparticles for drug delivery.
View Article and Find Full Text PDFInflammation exists in the microenvironment of most, if not virtually all, tumors, which greatly exacerbates the difficulty of cancer treatment. Considering the superiority of activatable photosensitizers (PSs), a novel strategy of 'making friends with the enemy' for tumor treatment was proposed. In this strategy, the "enemy" refers to inflammatory cytokines and the tumor site is targeted by detecting the enemy.
View Article and Find Full Text PDFDeveloping novel photosensitizers for deep tissue imaging and efficient photodynamic therapy (PDT) remains a challenge because of the poor water solubility, low reactive oxygen species (ROS) generation efficiency, serve dark cytotoxicity, and weak absorption in the NIR region of conventional photosensitizers. Herein, cyclometalated iridium (III) complexes (Ir) with aggregation-induced emission (AIE) feature, high photoinduced ROS generation efficiency, two-photon excitation, and mitochondria-targeting capability were designed and further encapsulated into biocompatible nanoparticles (NPs). The Ir-NPs can be used to disturb redox homeostasis in vitro, result in mitochondrial dysfunction and cell apoptosis.
View Article and Find Full Text PDFLipid droplets (LDs) establish a considerable number of contact sites with mitochondria to enable energy transfer and communication. In this study, we developed a fluorescent biosensor to image LD-mitochondria interactions at the nanoscale and further explored the function of LD-mediated matrix transmission in processes involving multi-organelle interactions. A fluorescent probe called (CHNO, 7-(diethylamino) coumarin-3-vinyl-4-pyridine acetonitrile) was designed and synthesized.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2021
The sequence-dependent DNA secondary structures possess structure polymorphism. To date, studies on regulated ligands mainly focus on individual DNA secondary topologies, while lack focus on quadruplex-duplex hybrids (QDHs). Here, we design an organic-metal hybrid ligand L Pt(dien), which matches and selectively binds one type of QDHs with lateral duplex stem-loop (QLDH) with high affinity, while shows poor affinity for other QDHs and individual G4 or duplex DNA.
View Article and Find Full Text PDFOncosis, depending on DNA damage and mitochondrial swelling, is an important approach for treating cancer and other diseases. However, little is known about the behavior of mitochondria during oncosis, due to the lack of probes for in situ visual illumination of the mitochondrial membrane and mtDNA. Herein, a mitochondrial lipid and mtDNA dual-labeled probe, MitoMN, and a continuous add-on assay, are designed to image the dynamic process of mitochondria in conditions that are unobservable with current mitochondrial probes.
View Article and Find Full Text PDFNuclei and mitochondria are the only cellular organelles containing genes, which are specific targets for efficient cancer therapy. So far, several photosensitizers have been reported for mitochondria targeting, and another few have been reported for nuclei targeting. However, none have been reported for photosensitization in both mitochondria and nucleus, especially in cascade mode, which can significantly reduce the photosensitizers needed for maximal treatment effect.
View Article and Find Full Text PDFFerroptosis regulates cell death through reactive oxygen species (ROS)-associated lipid peroxide accumulation, which is expected to affect the structure and polarity of lipid droplets (LDs), but with no clear evidence. Herein, we report the first example of an LD/nucleus dual-targeted ratiometric fluorescent probe, CQPP, for monitoring polarity changes in the cellular microenvironment. Due to the donor-acceptor structure of CQPP, it offers ratiometric fluorescence emission and fluorescence lifetime signals that reflect polarity variations.
View Article and Find Full Text PDF