Publications by authors named "Kangmin Yang"

Aims: Obesity and type 2 diabetes (T2D) are major risk factors for cardiovascular (CV) diseases. Dysregulated pro-apoptotic ceramide synthesis reduces β-cell insulin secretion, thereby promoting hyperglycaemic states that may manifest as T2D. Pro-apoptotic ceramides modulate insulin sensitivity and glucose tolerance while being linked to poor CV outcomes.

View Article and Find Full Text PDF

Aims: Enhancing SIRT1 activity exerts beneficial cardiovascular effects. In diabetes, plasma SIRT1 levels are reduced. We aimed to investigate the therapeutic potential of chronic recombinant murine SIRT1 (rmSIRT1) supplementation to alleviate endothelial and vascular dysfunction in diabetic mice (db/db).

View Article and Find Full Text PDF

Background: The use of artificial or autologous materials for inferior vena cava (IVC) reconstruction is controversial. This study retrospectively explored the effects of different materials on perioperative outcomes.

Methods: This study included 91 patients who underwent IVC reconstruction during liver autotransplantation between 2014 and 2020.

View Article and Find Full Text PDF

The lean diabetic patients with heart failure with preserved ejection fraction (HFpEF) in Asia suffer from adverse clinical outcomes and poor life quality. The suitable animal models are urgently needed for mechanistic study and therapeutic innovations. Our study reports that lipodystrophic mice with seipin depletion are lean, diabetic, and recapitulate major manifestations of clinical HFpEF, thereby clarifying that lean diabetes per se may produce HFpEF characteristics.

View Article and Find Full Text PDF

Aims: Nuclear receptors and their cofactors regulate key pathophysiological processes in atherosclerosis development. The transcriptional activity of these nuclear receptors is controlled by the nuclear receptor corepressors (NCOR), scaffolding proteins that form the basis of large corepressor complexes. Studies with primary macrophages demonstrated that the deletion of Ncor1 increases the expression of atherosclerotic molecules.

View Article and Find Full Text PDF

Altered vascular tone responsiveness to pathophysiological stimuli contributes to the development of a wide range of cardiovascular and metabolic diseases. Endothelial dysfunction represents a major culprit for the reduced vasodilatation and enhanced vasoconstriction of arteries. Adipose (fat) tissues surrounding the arteries play important roles in the regulation of endothelium-dependent relaxation and/or contraction of the vascular smooth muscle cells.

View Article and Find Full Text PDF

Background: The pericardial fluid may be representative of the interstitium of the heart. The aim of this study was to discriminate in cardiovascular disease patients between adipocytokines that are produced locally by the heart and those supplied by the circulation.

Methods: Enzyme-linked immunosorbent assays (ELISA) were used to determine levels of N-terminal pro-brain natriuretic peptide (NT-pBNP), fatty acid-binding protein 4 (FABP4), leptin, lipocalin-2, neutrophil elastase, proteinase-3, high sensitivity C-reactive protein (hsCRP) and adiponectin in venous plasma and pericardial fluid harvested during elective cardio-thoracic surgery (n = 132-152).

View Article and Find Full Text PDF

Lipocalin-2 is not only a sensitive biomarker, but it also contributes to the pathogenesis of renal injuries. The present study demonstrates that adipose tissue-derived lipocalin-2 plays a critical role in causing both chronic and acute renal injuries. Four-week treatment with aldosterone and high salt after uninephrectomy (ANS) significantly increased both circulating and urinary lipocalin-2, and it induced glomerular and tubular injuries in kidneys of WT mice.

View Article and Find Full Text PDF

Aims: Lipocalin-2 is a pro-inflammatory molecule characterized by a highly diversified pattern of expression and structure-functional relationships. In vivo, this molecule exists as multiple variants due to post-translational modifications and/or protein-protein interactions. Lipocalin-2 is modified by polyamination, which enhances the clearance of this protein from the circulation and prevents its excessive accumulation in tissues.

View Article and Find Full Text PDF

Exendin-4 is a strong therapeutic candidate for the treatment of metabolic syndrome. Related receptor agonist drugs have been on the market since 2005. However, technical limitations and the pain caused by subcutaneous injection have severely limited patient compliance.

View Article and Find Full Text PDF

Aims-SIRT1 exerts potent activity against cellular senescence and vascular ageing. By decreasing LKB1 protein levels, it promotes the survival and regeneration of endothelial cells. The present study aims to investigate the molecular mechanisms underlying SIRT1-mediated LKB1 degradation for the prevention of vascular ageing.

View Article and Find Full Text PDF

Background & Aims: Inflammatory cell infiltration in the liver is a hallmark of non-alcoholic steatohepatitis (NASH). However, the pathological events which trigger the infiltration of inflammatory cells to mediate NASH pathogenesis remains poorly understood. This study aims to investigate the role of neutrophil-derived lipocalin 2 (LCN2) in mediating the transition from simple steatosis to NASH.

View Article and Find Full Text PDF

The hamster has been previously found to be a suitable model to study the changes associated with diet-induced hyperlipidemia in humans. Traditionally, studies of hyperlipidemia utilize serum- or plasma-based biochemical assays and histopathological evaluation. However, unbiased metabonomic technologies have the potential to identify novel biomarkers of disease.

View Article and Find Full Text PDF

To obtain a better understanding of the progression of atherosclerosis and identify potential biomarkers, proton nuclear magnetic resonance spectroscopy (1H NMR)-based metabonomics was used to study the metabolic changes in the plasma of hamster fed with a high-fat/cholesterol diet. Plasma samples were collected at different time points during the progression of atherosclerosis and individual proton NMR spectra were visually and statistically assessed using multivariate analyses. NMR results for all samples showed a time-dependent development from physiological to pathophysiological status during atherosclerosis.

View Article and Find Full Text PDF

PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a tumor suppressor and has been suggested recently to be involved in the regulation of cardiovascular diseases. The molecular mechanisms of this regulation are however poorly understood. This study shows that down regulation of PTEN expression and activity by angiotensin II (Ang II) increased proliferation and migration of vascular smooth muscle cells (VSMCs).

View Article and Find Full Text PDF

A simple and sensitive method to determine lipoprotein and lipids profiles in micro-liter scale individual serum sample is not presently available. Traditional lipoprotein separation techniques either by ultra-centrifugation or by liquid chromatography methods have their disadvantages in both lipoprotein separation and lipids component quantification. In this study we used small volume needing size-exclusion fast protein liquid chromatography to separate different lipoprotein subclasses in 50μL serum.

View Article and Find Full Text PDF