Elevation gradients, often regarded as "natural experiments or laboratories", can be used to study changes in the distribution of microbial diversity related to changes in environmental conditions that typically occur over small geographical scales. We exploited this feature by characterizing fungal composition and diversity along an elevation gradient on Xinglong Mountain, northwest China. For this, we used MiSeq sequencing to obtain fungal sequences and clustered them into operational taxonomic units (OTUs).
View Article and Find Full Text PDFSci Total Environ
October 2019
Global climate change influences not only vascular plants, but also biological soil crusts (biocrusts), which play important roles in dryland vegetation dynamics by redistributing rainfall in soils. Different types of biocrusts, spanning a spectrum from cyanobacteria-dominated and moss-dominated, have distinct roles in rainfall redistribution patterns, but the ecohydrological effects of different biocrust types on dryland ecosystem dynamics remain largely unclear. This study developed an ecohydrological model with biocrust as a system state variable to explicitly explore the effects of different biocrust types on dryland vegetation dynamics in Shapotou region in northern China, particularly after restoration.
View Article and Find Full Text PDFThe exploration of highly efficient non-noble metal electrocatalysts for hydrogen evolution reaction (HER) under alkaline conditions is highly imperative but still remains a great challenge. In this work, the nanohybrid of carbon quantum dots and molybdenum phosphide nanoparticle (CQDs/MoP) has been firstly demonstrated as an efficient alkaline HER electrocatalyst. The CQDs/MoP nanohybrid is readily prepared through a charge-directed self-assembly of CQDs with phosphomolybdic acid (HPMoO) at the molecular level, followed by facile phosphatizing at 700 °C.
View Article and Find Full Text PDF