Computer-assisted synthesis planning has emerged as a valuable tool for organic synthesis. Prediction of reaction conditions is crucial for applying the planned synthesis routes. However, achieving diverse suggestions while ensuring the reasonableness of predictions remains an underexplored challenge.
View Article and Find Full Text PDFComputer-assisted synthesis planning has become increasingly important in drug discovery. While deep-learning models have shown remarkable progress in achieving high accuracies for single-step retrosynthetic predictions, their performances in retrosynthetic route planning need to be checked. This study compares the intricate single-step models with a straightforward template enumeration approach for retrosynthetic route planning on a real-world drug molecule data set.
View Article and Find Full Text PDFRetrosynthetic route planning can be considered a rule-based reasoning procedure. The possibilities for each transformation are generated based on collected reaction rules, and then potential reaction routes are recommended by various optimization algorithms. Although there has been much progress in computer-assisted retrosynthetic route planning and reaction prediction, fully data-driven automatic retrosynthetic route planning remains challenging.
View Article and Find Full Text PDFDe novo drug design aims to generate novel chemical compounds with desirable chemical and pharmacological properties from scratch using computer-based methods. Recently, deep generative neural networks have become a very active research frontier in de novo drug discovery, both in theoretical and in experimental evidence, shedding light on a promising new direction of automatic molecular generation and optimization. In this review, we discussed recent development of deep learning models for molecular generation and summarized them as four different generative architectures with four different optimization strategies.
View Article and Find Full Text PDF