Advancements in screening technologies employing small organisms have enabled deep profiling of compounds in vivo. However, current strategies for phenotyping of behaving animals, such as zebrafish, typically involve tedious manipulations. Here, we develop and validate a fully automated in vivo screening system (AISS) that integrates microfluidic technology and computer-vision-based control methods to enable rapid evaluation of biological responses of non-anesthetized zebrafish to molecular gradients.
View Article and Find Full Text PDFWound infections pose a major healthcare issue, affecting the well-being of millions of patients worldwide. Effective intervention and on-site detection are important in wound management. However, current approaches are hindered by time-consuming analysis and a lack of technology for real-time monitoring and prompt therapy delivery.
View Article and Find Full Text PDF