Semi-transparent large-area luminescent solar concentrators (LSCs) have been considered an essential part of zero-energy or low-energy consuming buildings in the future. Inorganic colloidal quantum dots (QDs) are promising candidates for LSCs due to the advantages of a tunable bandgap, engineered large Stokes shift, and relatively high photoluminescence (PL) quantum yield. However, LSCs that are fabricated using colloidal quantum dots exhibited an inferior stability under long-term illumination, demanding great efforts to explore the highly stable LSCs.
View Article and Find Full Text PDFSolid-state anion exchange method is easy to handle and beneficial to improve stability of CsPbX (X = Cl, Br, I) perovskites nanocrystals (NCs) with respect to anion exchange in liquid phase. However, the corresponding exchange rate is rather slow due to the limited diffusion rate of anions from solid phases, resulting in mixed-halide perovskite NCs. Herein, a fast and reversible post-synthetic quasi-solid-state anion exchange method in CsPbX NCs with inorganic potassium halide KX salts/polyvinylpyrrolidone (PVP) thin film is firstly reported.
View Article and Find Full Text PDFAs an important part of perovskite solar cells (PSCs), hole transporting layer (HTL) has a critical impact on the performance and stability of the devices. In an attempt to alleviate the moisture and thermal stability issues from the commonly used HTL Spiro-OMeTAD with dopant, it is urgent to develop novel HTLs with high stability. In this study, a new class of polymers D18 and D18-Cl are applied as undoped HTL for CsPbIBr-based PSCs.
View Article and Find Full Text PDF