The development of piezoelectrics with high catalytic activity to address environmental pollution and energy shortage has long been pursued. In this work, for the first time, a "three-birds-with-one-stone" strategy is proposed to design high-activity piezocatalysts. Interestingly, we achieved ultrathin, highly exposed polar facets and ferroelectric-paraelectric phase transitions in BaSrTiO nanosheets simultaneously.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2023
The piezo-/photocatalytic effects of ZnO have been in the limelight because of their great potential in environmental remediation and energy conversion. However, the poor recyclability of the suspended catalysts can cause inevitable secondary pollution, which is one of the major issues that limit the practical application of these materials. To address this problem, a magnetically retrievable FeO@SiO@ZnO nanocomposite was designed and successfully synthesized by multi-step reactions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
Piezocatalysis is one of the green and promising catalytic technologies for the degradation of organic pollutants. Surface modifications such as exposed facet engineering and surface decoration of nanoparticles (NPs) are simple but useful enhancement strategies for a catalytic system. However, the synergistic effect and mechanism of facet engineering and dual-cocatalyst decoration on piezocatalytic activity are still ambiguous and more investigations are expected.
View Article and Find Full Text PDFIt is of great significance to understand the role of carrier in piezocatalysis of composites by studying the separation mode of carriers under dynamic polarization field. Herein, the separation and migration pathways of carriers under piezoelectric field are investigated by synthesizing heterojunctions with BiWO (BWO) nanosheets grown vertically on g-CN (CN) coated ZnO nanorods and directly on ZnO. Compared with the photocatalysis, the piezocatalytic efficiency of Rhodamine B (RhB) by BWO/ZnO is significantly increased to 0.
View Article and Find Full Text PDF