Publications by authors named "Kangho Lee"

Amputees typically experience changes in residual limb volume in their daily lives. It causes an uncomfortable fit of the socket by applying high pressure on the sensitive area of the residual limb or by loosening the socket. In this study, we developed a transfemoral prosthetic socket for above-the-knee amputees that ensures a good socket fit by maintaining uniform and constant contact pressure despite volume changes in the residual limb.

View Article and Find Full Text PDF

Background: In patients with severe trauma, the diagnosis of acute kidney injury (AKI) is important because it is a predictive factor for poor prognosis and can affect patient care. The diagnosis and staging of AKI are based on change in serum creatinine (SCr) levels from baseline. However, baseline creatinine levels in patients with traumatic injuries are often unknown, making the diagnosis of AKI in trauma patients difficult.

View Article and Find Full Text PDF

We report on a controllable and specific functionalisation route for graphene field-effect transistors (GFETs) for the recognition of small physiologically active molecules. Key element is the noncovalent functionalisation of the graphene surface with perylene bisimide (PBI) molecules directly on the growth substrate. This Functional Layer Transfer enables the homogeneous self-assembly of PBI molecules on graphene, onto which antibodies are subsequently immobilised.

View Article and Find Full Text PDF

Non-volatile magnetic random-access memories (MRAMs), such as spin-transfer torque MRAM and next-generation spin-orbit torque MRAM, are emerging as key to enabling low-power technologies, which are expected to spread over large markets from embedded memories to the Internet of Things. Concurrently, the development and performances of devices based on two-dimensional van der Waals heterostructures bring ultracompact multilayer compounds with unprecedented material-engineering capabilities. Here we provide an overview of the current developments and challenges in regard to MRAM, and then outline the opportunities that can arise by incorporating two-dimensional material technologies.

View Article and Find Full Text PDF

Purpose: The scoring system for traumatic liver injury (SSTLI) was developed in 2015 to predict mortality in patients with polytraumatic liver injury. This study aimed to validate the SSTLI as a prognostic factor in patients with polytrauma and liver injury through a generalized estimating equation analysis.

Methods: The medical records of 521 patients with traumatic liver injury from January 2015 to December 2019 were reviewed.

View Article and Find Full Text PDF

Implementations of artificial neural networks that borrow analogue techniques could potentially offer low-power alternatives to fully digital approaches. One notable example is in-memory computing based on crossbar arrays of non-volatile memories that execute, in an analogue manner, multiply-accumulate operations prevalent in artificial neural networks. Various non-volatile memories-including resistive memory, phase-change memory and flash memory-have been used for such approaches.

View Article and Find Full Text PDF

Typically, the actual volume of the residual limb changes over time. This causes the prosthesis to not fit, and then pain and skin disease. In this study, a prosthetic socket was developed to compensate for the volume change of the residual limb.

View Article and Find Full Text PDF

We developed an integrated PCR system that performs automated sample preparation and fast polymerase chain reaction (PCR) for application in point-of care (POC) testing. This system is assembled from inexpensive 3D-printing parts, off-the-shelf electronics and motors. Molecular detection requires a series of procedures including sample preparation, amplification, and fluorescence intensity analysis.

View Article and Find Full Text PDF

The unique properties and atomic thickness of two-dimensional (2D) materials enable smaller and better nanoelectromechanical sensors with novel functionalities. During the last decade, many studies have successfully shown the feasibility of using suspended membranes of 2D materials in pressure sensors, microphones, accelerometers, and mass and gas sensors. In this review, we explain the different sensing concepts and give an overview of the relevant material properties, fabrication routes, and device operation principles.

View Article and Find Full Text PDF

Two-dimensional materials (2DMs) have high potential in gas sensing, due to their large surface-to-volume ratio. However, most sensors based on 2DMs suffer from the lack of a steady state during gas exposure, hampering sensor calibration. Here, we demonstrate that analysis of the time differential of the signal output enables the calibration of chemiresistors based on platinum or tungsten diselenide (PtSe, WSe) and molybdenum disulfide (MoS), which present nonstationary behavior.

View Article and Find Full Text PDF

A body pressure relief system was newly developed with optical pressure sensors for pressure ulcer prevention. Unlike a conventional alternating pressure air mattress (APAM), this system automatically regulates air flow into a body supporting mattress with adaptive inflation (or deflation) duration in response to the pressure level in order to reduce skin stress due to prolonged high pressures. The system continuously quantifies the body pressure distribution using time-of-flight (ToF) optical sensors.

View Article and Find Full Text PDF

A disposable potentiometric sensor was newly developed for the amplification-coupled detection of nucleic acids. The hydrogen-ion is generally released during isothermal amplification of nucleic acids. The surface potential on the oxide-functionalized electrode of the extended gate was directly measured using full electrical circuits with the commercial metal-oxide semiconductor field-effect transistors (MOSFETs) and ring oscillator components, which resulted in cost-effective, portable and scalable real-time nucleic acid analysis.

View Article and Find Full Text PDF

Layered two-dimensional (2D) materials display great potential for a range of applications, particularly in electronics. We report the large-scale synthesis of thin films of platinum diselenide (PtSe), a thus far scarcely investigated transition metal dichalcogenide. Importantly, the synthesis by thermally assisted conversion is performed at 400 °C, representing a breakthrough for the direct integration of this material with silicon (Si) technology.

View Article and Find Full Text PDF

Relocation mechanisms of the circulating tumor cells (CTCs) from the primary site to the secondary site through the blood vessel network cause tumor metastasis. Despite of the importance to diagnose the cancer metastasis by CTCs, still it is formidable challenge to use in the clinical purpose because of the rarity and the heterogeneity of CTCs in the cancer patient's peripheral blood sample. In this study we have developed magnetic force gradient based microfluidic chip (Mag-Gradient Chip) for isolating the total number of CTCs in the sample and characterizing the state of CTCs simultaneously with respect to the epithelial cell adhesion molecule (EpCAM) expression level.

View Article and Find Full Text PDF

Few-layer black phosphorus (BP) is a new two-dimensional material which is of great interest for applications, mainly in electronics. However, its lack of environmental stability severely limits its synthesis and processing. Here we demonstrate that high-quality, few-layer BP nanosheets, with controllable size and observable photoluminescence, can be produced in large quantities by liquid phase exfoliation under ambient conditions in solvents such as N-cyclohexyl-2-pyrrolidone (CHP).

View Article and Find Full Text PDF

Reliable chemical vapour deposition (CVD) of transition metal dichalcogenides (TMDs) is currently a highly pressing research field, as numerous potential applications rely on the production of high quality films on a macroscopic scale. Here, we show the use of liquid phase exfoliated nanosheets and patterned sputter deposited layers as solid precursors for chemical vapour deposition. TMD monolayers were realized using a close proximity precursor supply in a CVD microreactor setup.

View Article and Find Full Text PDF

5-HT7 receptor (5-HT7R) is a promising target for the treatment of depression and neuropathic pain. 5-HT7R antagonists exhibited antidepressant effects, while the agonists produced strong anti-hyperalgesic effects. In our efforts to discover selective 5-HT7R antagonists or agonists, N-biphenylylmethyl 2-methoxyphenylpiperazinylalkanamides 1 were designed, synthesized, and biologically evaluated against 5-HT7R.

View Article and Find Full Text PDF

Objective: Recently, workers' mental health has become important focus in the field of occupational health management. Depression is a psychiatric illness with a high prevalence. The association between job stress and depressive symptoms has been demonstrated in many studies.

View Article and Find Full Text PDF

The 5-HT7 receptor (5-HT7 R) is a promising therapeutic target for the treatment of depression and neuropathic pain. The 5-HT7 R antagonist SB-269970 exhibited antidepressant-like activity, whereas systemic administration of the 5-HT7 R agonist AS-19 significantly inhibited mechanical hypersensitivity and thermal hyperalgesia. In our efforts to discover selective 5-HT7 R antagonists or agonists, aryl biphenyl-3-ylmethylpiperazines were designed, synthesized, and biologically evaluated against the 5-HT7 R.

View Article and Find Full Text PDF

High-performance sensors based on molybdenum disulfide (MoS2 ) grown by sulfurization of sputtered molybdenum layers are presented. Using a simple integration scheme, it is found that the electrical conductivity of MoS2 films is highly sensitive to NH3 adsorption, consistent with n-type semiconducting behavior. A sensitivity of 300 ppb at room temperature is achieved, showing the high potential of 2D transition metal-dichalcogenides for sensing.

View Article and Find Full Text PDF

We report the manufacture of novel graphene diode sensors (GDS), which are composed of monolayer graphene on silicon substrates, allowing exposure to liquids and gases. Parameter changes in the diode can be correlated with charge transfer from various adsorbates. The GDS allows for investigation and tuning of extrinsic doping of graphene with great reliability.

View Article and Find Full Text PDF

This paper reports a label-free biosensor for the detection of DNA hybridization. The proposed biosensor measures the surface potential on oligonucleotide modified electrodes using a direct charge accumulation method. The sensor directly and repeatedly measures the charges induced in the working electrode, which correspond to intrinsic negative charges in immobilized molecules.

View Article and Find Full Text PDF

Graphene exhibits exciting properties which make it an appealing candidate for use in electronic devices. Reliable processes for device fabrication are crucial prerequisites for this. We developed a large area of CVD synthesis and transfer of graphene films.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session75doqqebk4kanu2uu1k2qai13ojq1mcg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once