Antibiotic resistance represents one of the most pressing concerns facing public health today. While the current antibiotic resistance crisis has been driven primarily by the anthropogenic overuse of antibiotics in human and animal health, recent efforts have revealed several important environmental dimensions underlying this public health issue. Antibiotic resistant (AR) microbes, AR genes, and antibiotics have all been found widespread in natural environments, reflecting the ancient origins of this phenomenon.
View Article and Find Full Text PDFA growing body of evidence has demonstrated that extraintestinal pathogenic E. coli (ExPEC), such as the urinary pathogenic E. coli (UPEC), are common constituents of treated wastewater, and therefore represent a potential public health risk.
View Article and Find Full Text PDFThis study was designed to evaluate the viability, prophage induction, invasive ability, and relative gene expression in lysogenic Salmonella Typhimurium exposed to the simulated gastric juice (SGJ) at pH 2 (SGJ-2), 3 (SGJ-3), 4 (SGJ-4), and 5 (SGJ-5) for 30 min followed by 0.5 % bile salts for 2 h. The susceptibility of lysogenic S.
View Article and Find Full Text PDFThis study was designed to evaluate the effect of bacteriophage P22 on the susceptibility, swimming motility, invasion gene expression, invasive ability, and intracellular survival of Salmonella Typhimurium exposed to the simulated intestinal conditions. S. Typhimurium cells were inoculated at 37 °C for 4 h in the simulated intestinal conditions with or without bacteriophage P22, including control (0 % bile salts, pH 7.
View Article and Find Full Text PDF