Publications by authors named "Kanghao Chen"

Purpose: The Lenke classification system is widely utilized as the preoperative evaluation protocol for adolescent idiopathic scoliosis (AIS). However, manual measurement is susceptible to observer-induced variability, which consequently impacts the evaluation of progression. The goal of this investigation was to develop an automated Lenke classification system utilizing innovative deep learning algorithms.

View Article and Find Full Text PDF

To overcome the intestinal epithelium barrier and achieve a better antitumor effect, the procedurally targeting flower-like nanomicelles for oral delivery of antitumor drugs were designed based on FAPα-responsive TPGS1000 dimer (TPGS-Gly-Pro-TPGS) and L-carnitine linked poly(2-ethyl-2-oxazoline)--poly(D, l-lactide) (Car-PEOz--PLA). As expected, compared with unmodified polymeric micelles (TT-PMs) composed of TPGS-Gly-Pro-TPGS, L-carnitine conjugated polymeric micelles (CTT-PMs) formed from both TPGS-Gly-Pro-TPGS and Car-PEOz--PLA with favorable stability in simulated gastrointestinal fluid and FAPα-dependent release capability exhibited remarkably enhanced cellular uptake and transmembrane transport through OCTN2 mediation confirmed by fluorescence immunoassay, which was intuitively evidenced by stronger fluorescence within epithelial cells, and the basal side of small intestinal epithelium of mice being given intragastric administration of DiI-labeled micelles. The transport of CTT-PMs across the intestinal epithelium in an intact form was mediated by clathrin along the intracellular transport pathway of endosome-lysosome-ER-Golgi apparatus.

View Article and Find Full Text PDF

Imbalanced training data in medical image diagnosis is a significant challenge for diagnosing rare diseases. For this purpose, we propose a novel two-stage Progressive Class-Center Triplet (PCCT) framework to overcome the class imbalance issue. In the first stage, PCCT designs a class-balanced triplet loss to coarsely separate distributions of different classes.

View Article and Find Full Text PDF

The intestinal epithelium is known to be a main hindrance to oral delivery of nanoparticles. Even though surface ligand modification can enhance cellular uptake of nanoparticles, the "easy entry and hard across" was frequently observed for many active targeting nanoparticles. Here, we fabricated polymeric nanoparticles relayed by bile acid transporters with monomethoxy poly(ethylene glycol)-poly(D,l-lactide) and deoxycholic acid-conjugated poly(2-ethyl-2-oxazoline)-poly(D,l-lactide) based on structural characteristics of intestine epithelium and the absorption characteristics of endogenous substances.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9b7anv8oierbvcdbvod3lo9qe5327sok): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once