Publications by authors named "Kangha Lee"

We present facile synthesis of bright CdS/CdSe/CdS@SiO nanoparticles with 72% of quantum yields (QYs) retaining ca 80% of the original QYs. The main innovative point is the utilization of the highly luminescent CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) as silica coating seeds. The significance of inorganic semiconductor shell passivation and structure design of quantum dots (QDs) for obtaining bright QD@SiO is demonstrated by applying silica encapsulation via reverse microemulsion method to three kinds of QDs with different structure: CdSe core and 2 nm CdS shell (CdSe/CdS-thin); CdSe core and 6 nm CdS shell (CdSe/CdS-thick); and CdS core, CdSe intermediate shell and 5 nm CdS outer shell (CdS/CdSe/CdS-SQW).

View Article and Find Full Text PDF

We report the photocatalytic conversion of CO2 to CH4 using CuPt alloy nanoclusters anchored on TiO2. As the size of CuPt alloy nanoclusters decreases, the photocatalytic activity improves significantly. Small CuPt nanoclusters strongly bind CO2 intermediates and have a stronger interaction with the TiO2 support, which also contributes to an increased CH4 generation rate.

View Article and Find Full Text PDF

We developed a new chemical strategy to enhance the stability of lead selenide nanocrystals (PbSe NCs) against oxidation through the surface passivation by P-O- moieties. In the synthesis of PbSe NCs, tris(diethylamino)phosphine (TDP) selenide (Se) was used as a Se precursor, and the resulting PbSe NCs withstood long-term air exposure while showing nearly no sign of oxidation. Nuclear magnetic resonance (NMR) spectroscopy reveals that TDP derivatives passivate the surface of PbSe NC.

View Article and Find Full Text PDF

We report ripening of metal particles anchored on pyramid-shaped heterostructure nanocrystals. The 'intra-particle' ripening results in a large metal tip at one corner with the other three tips vanishing. Investigation reveals that the ripening and core/shell formation affects photocatalytic activities via the Fermi level change.

View Article and Find Full Text PDF