Publications by authors named "KangKai Tian"

In this work, electrical and optical performances for 250 nm AlGaN-based flip-chip deep ultraviolet light emitting diodes (DUV LEDs) with different chip sizes are studied. Reduced chip size helps increase the light extraction efficiency (LEE) with the cost of increased surface nonradiative recombination. Nevertheless, a thin p-AlGaN layer of 10 nm can manage current distribution while suppressing surface recombination and reducing light absorption simultaneously, which results in the increased optical power density.

View Article and Find Full Text PDF

In this Letter, an omni-directional reflector (ODR) with a thin hybrid dielectric layer (hybrid-ODR) is proposed to enhance the light extraction efficiency (LEE) for inclined-sidewall-shaped AlGaN-based deep ultraviolet light-emitting diode (DUV LED) by inserting a thin diamond with high refraction index into a conventional Al/AlO-based ODR. The three-dimensional finite-difference time-domain (3D FDTD) simulation results show that the LEE of TM-polarized light for the DUV LED with hybrid-ODR is enhanced by 18.5% compared with Al/AlO-based ODR.

View Article and Find Full Text PDF

In this work, we hybridize an air cavity reflector and a nanopatterned sapphire substrate (NPSS) for making an inclined-sidewall-shaped deep ultraviolet micro light-emitting diode (DUV micro-LED) array to enhance the light extraction efficiency (LEE). A cost-effective hybrid photolithography process involving positive and negative photoresist (PR) is explored to fabricate air-cavity reflectors. The experimental results demonstrate a 9.

View Article and Find Full Text PDF

It is known that light extraction efficiency (LEE) for AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) can be enhanced by using an inclined sidewall of mesa. However, the reported optimal inclined angles are different. In this work, to explore the origin for enhancing the LEE of DUV LED by using inclined sidewalls, we investigate the effect of an inclined sidewall angle on the LEE for AlGaN-based DUV LEDs with different mesa diameters by using ray tracing.

View Article and Find Full Text PDF

In this Letter, beveled mesas for 30 × 30 µm GaN-based micro-light-emitting diodes (µLEDs) with different inclination angles are designed, fabricated, and measured. We find that µLED with a mesa inclination angle of 28° has the lowest internal quantum efficiency (IQE) and the highest injection current density at which the peak IQE is obtained. This is due to the increased quantum confined Stark effect (QCSE) at the mesa edge.

View Article and Find Full Text PDF

In this work, a 280 nm AlGaN-based deep ultraviolet light-emitting diode (DUV LED) with a metal-insulator-semiconductor (MIS) structured n-electrode is fabricated and studied. The insulator layer is adopted to form the MIS structure by using an atomic layer deposition system. After adopting the MIS-structured n-electrode, the intermediate layer enables electron affinity for the contact metal to be higher than the conduction band of the n-AlGaN layer, which favors the electrons to be injected into the n-AlGaN layer by intraband tunneling rather than thermionic emission.

View Article and Find Full Text PDF

It is known that light extraction efficiency (LEE) for AlGaN-based deep ultraviolet light-emitting didoes (DUV LEDs) can be enhanced by using truncated cone arrays with inclined sidewalls. In this work, the air-cavity-shaped inclined sidewall is applied and the p-GaN layer at the top of the truncated cone is laterally over-etched so that more light escape paths are generated for AlGaN-based DUV LEDs. The experimental results manifest that when compared with DUV LEDs only having the air-cavity-shaped inclined sidewall, the optical power for the DUV LEDs with laterally over-etched p-GaN at the top of the truncated cone is enhanced by 30% without sacrificing the forward bias.

View Article and Find Full Text PDF

In this report, we investigate the impact of a thin p-GaN layer on the efficiency for AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs). According to our results, the light extraction efficiency (LEE) becomes higher with the decrease of the p-GaN layer thickness, which can be ascribed to the decreased absorption of DUV emission by the thin p-GaN layer. Moreover, we also find that the variation trend of external quantum efficiency (EQE) is consistent with that of LEE.

View Article and Find Full Text PDF

In this work, we propose adopting step-type quantum wells to improve the external quantum efficiency for GaN-based yellow micro light-emitting diodes. The step-type quantum well is separated into two parts with slightly different InN compositions. The proposed quantum well structure can partially reduce the polarization mismatch between quantum barriers and quantum wells, which increases the overlap for electron and hole wave functions without affecting the emission wavelength.

View Article and Find Full Text PDF

Owing to high surface-to-volume ratio, InGaN-based micro-light-emitting diodes (μLEDs) strongly suffer from surface recombination that is induced by sidewall defects. Moreover, as the chip size decreases, the current spreading will be correspondingly enhanced, which therefore further limits the carrier injection and the external quantum efficiency (EQE). In this work, we suggest reducing the nonradiative recombination rate at sidewall defects by managing the current spreading effect.

View Article and Find Full Text PDF

In this report, we propose GaN-based vertical cavity surface emitting lasers with a p-GaN/n-GaN/p-GaN (PNP-GaN) structured current spreading layer. The PNP-GaN current spreading layer can generate the energy band barrier in the valence band because of the modulated doping type, which is able to favor the current spreading into the aperture. By using the PNP-GaN current spreading layer, the thickness for the optically absorptive ITO current spreading layer can be reduced to decrease internal loss and then enhance the lasing power.

View Article and Find Full Text PDF

In this work, we propose and demonstrate the concept of remote reflections, which help to multiply the photon propagations for increasing the light extraction efficiency (LEE) for both transverse magnetic (TM)- and transverse electric (TE)-polarized light. The remote reflection is enabled by using a remote-metal-reflector-based air cavity extractor. According to our study, the remote reflections can significantly avoid the optical absorption when compared with the conventional inclined-sidewall-shaped deep-ultraviolet light-emitting diodes with the metal Al reflector on the inclined sidewalls.

View Article and Find Full Text PDF

A better lateral current confinement is essentially important for GaN-based vertical-cavity-surface-emitting lasers (VCSELs) to achieve lasing condition. Therefore, a buried insulator aperture is adopted. However, according to our results, we find that the current cannot be effectively laterally confined if the insulator layer is not properly selected, and this is because of the unique feature for GaN-based VCSELs grown on insulating substrates with both p-electrode and n-electrode on the same side.

View Article and Find Full Text PDF

In this work, parametric investigations on structural optimization are systematically made for 4H-SiC-based separated absorption charge and multiplication (SACM) avalanche ultraviolet photodiode (UV APD). According to our results, the breakdown voltage can be strongly affected by the thickness for the multiplication layer and the doping concentration for the charge control layer. The thickness for the n-type ohmic contact layer, the absorption layer, and the charge control layer can remarkably affect the light penetration depth, which correspondingly influences the number of photo-generated electron-hole pairs, and therefore the aforementioned layer thickness has a strong impact on the responsivity for SACM APD.

View Article and Find Full Text PDF

In this report, we locally modulate the doping type in the n-AlGaN layer by proposing n-AlGaN/p-AlGaN/n-AlGaN (NPN-AlGaN)-structured current spreading layer for AlGaN-based deep ultraviolet light-emitting diodes (DUV LEDs). After inserting a thin p-AlGaN layer into the n-AlGaN electron supplier layer, a conduction band barrier can be generated in the n-type electron supplier layer, which enables the modulation of the lateral current distribution in the p-type hole supplier layer for DUV LEDs. Additionally, according to our studies, the Mg doping concentration, the thickness, the AlN composition for the p-AlGaN insertion layer and the NPN-AlGaN junction number are found to have a great influence on the current spreading effect.

View Article and Find Full Text PDF

In this work, the size-dependent effect for InGaN/GaN-based blue micro-light emitting diodes (µLEDs) is numerically investigated. Our results show that the external quantum efficiency (EQE) and the optical power density drop drastically as the device size decreases when sidewall defects are induced. The observations are owing to the higher surface-to-volume ratio for small µLEDs, which makes the Shockley-Read-Hall (SRH) non-radiative recombination at the sidewall defects not negligible.

View Article and Find Full Text PDF

For the [0001] oriented AlGaN-based deep ultraviolet light-emitting diodes (DUV LEDs), the holes in the p-type electron blocking layer (p-EBL) are depleted due to the polarization induced positive sheet charges at the last quantum barrier (LQB)/p-EBL interface. The hole depletion effect significantly reduces the hole injection capability across the p-EBL. In this work, we propose inserting a thin AlN layer between the LQB and the p-EBL, which can generate the hole accumulation at the AlN/p-EBL interface.

View Article and Find Full Text PDF

In this work, flip-chip AlGaN-based deep ultraviolet light-emitting diodes (DUV LEDs) with various meshed contact structures are systematically investigated via three-dimensional finite-difference time-domain (3D FDTD) method. It is observed that both transverse electric (TE)- and transverse magnetic (TM)-polarized light extraction efficiencies (LEEs) are sensitive to the spacing and inclined angle for the meshed structure. We also find that the LEE will not be increased when a large filling factor is adopted for the meshed structures, which is because of the competition among the p-GaN layer absorption, the Al metal plasmon resonant absorption, and the scattering effect by meshed structures.

View Article and Find Full Text PDF

CsPbX perovskite nanocrystals (NCs) are becoming a promising material for optoelectronic devices that possess an optically tunable bandgap, and bright photoluminescence. However, the toxic Pb is not environmentally friendly and the quantum yield (QY) of blue emitting NCs is relatively low. In addition, the red emitting perovskite containing iodine is not stable under light illumination.

View Article and Find Full Text PDF

In this report, AlGaN-based deep ultraviolet light-emitting diodes (DUV LEDs) with different p-AlGaN/n-AlGaN/p-AlGaN (PNP-AlGaN) structured current spreading layers have been described and investigated. According to our results, the adopted PNP-AlGaN structure can induce an energy barrier in the hole injection layer that can modulate the lateral current distribution. We also find that the current spreading effect can be strongly affected by the thickness, the doping concentration, the PNP loop, and the AlN composition for the inserted n-AlGaN layer.

View Article and Find Full Text PDF

This work establishes the relationship between the electron energy and the electron concentration within the multiple quantum wells (MQWs) for AlGaN based deep ultraviolet light-emitting diodes (DUV LEDs). The electron energy of different values can be obtained by modulating the Si doping concentration in the n-AlGaN layer and/or engineering the polarization induced interface charges. The modulated Si doping concentration in the n-AlGaN layer will cause the interface depletion region within which the electric field can be generated and then tunes the electron energy.

View Article and Find Full Text PDF

This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency into the multiple quantum wells (MQWs).

View Article and Find Full Text PDF

In this work, III-nitride based ∼370  nm UVA light-emitting diodes (LEDs) grown on Si substrates are demonstrated. We also reveal the impact of the AlN composition in the AlGaN quantum barrier on the carrier injection for the studied LEDs. We find that, by properly increasing the AlN composition, both the electron and hole concentrations in the multiple quantum wells (MQWs) are enhanced.

View Article and Find Full Text PDF