Simple, rapid, and accurate detection of the Mycobacterium tuberculosis complex (MTBC) and drug resistance is critical for improving patient care and decreasing the spread of tuberculosis. To this end, we have developed a new simple and rapid molecular method, which combines multienzyme isothermal rapid amplification and a lateral flow strip, to detect MTBC and simultaneously detect rifampin (RIF) resistance. Our findings showed that it has sufficient sensitivity and specificity for discriminating 118 MTBC strains from 51 non-tuberculosis mycobacteria strains and 11 of the most common respiratory tract bacteria.
View Article and Find Full Text PDFWith the increasing incidence of drug-resistant tuberculosis (DR-TB), determining a rapid and accurate drug susceptibility testing (DST) method to identify ethambutol (EMB) resistance in has become essential for patient management in China. Herein, we evaluated the correlation between three phenotypic DST methods, namely, proportion method (PM), MGIT 960 system, and microplate alamar Blue assay (MABA), and DNA sequencing of in 118 isolates from China. When the results of the phenotypic DST methods were compared with those of DNA sequencing, the overall agreement and kappa values of the PM, MGIT 960 system, and MABA were 81.
View Article and Find Full Text PDFInt J Antimicrob Agents
December 2019
A retrospective analysis was performed in two major HIV/AIDS referral hospitals in Beijing to evaluate the prevalence of Mycobacterium tuberculosis (MTB) and non-tuberculous mycobacterial (NTM) infections in HIV-infected patients. A total of 627 patients' data were reviewed, and 102 (16.3%) patients were diagnosed with culture-confirmed mycobacterial infection, including 84 with MTB, 16 with NTM, and 2 with both MTB and NTM.
View Article and Find Full Text PDF